12. If x = 2 – √3, find the value of (x – 1/x)^3
Answers
Answered by
3
Answer:
X=2-√3
=>1/x = 1/(2-√3)
=>1/x=2+√3
Now,
x-(1/x)=(2-√3)-(2+√3)
=>x-(1/x)=-2√3
=>{x-(1/x)} ³=-24√3
Answered by
7
Answér :
(x - 1/x)³ = -24√3
Solution :
- Given : x = 2 - √3
- To find : (x - 1/x)³
We have ;
x = 2 - √3
Thus ,
1/x = 1/(2 - √3)
Now ,
Rationalising the denominator of the term in RHS , we get ;
=> 1/x = (2 + √3) / (2 - √3)×(2 + √3)
=> 1/x = (2 + √3) / [ 2² - (√3)² ]
=> 1/x = (2 + √3) / (4 - 3)
=> 1/x = (2 + √3) / 1
=> 1/x = 2 + √3
Now ,
=> x - 1/x = (2 - √3) - (2 + √3)
=> x - 1/x = 2 - √3 - 2 - √3
=> x - 1/x = -2√3
Now ,
Cubing both the sides , we get ;
=> (x - 1/x)³ = (-2√3)³
=> (x - 1/x)³ = -24√3
Hence ,
(x - 1/x)³ = -24√3
Similar questions