12.If x = r cos a sin ß, y = r cos a cos B and z = r sin a, show that x2 + y2 + z2 = r2
Answers
Answered by
1
Answer:
L.H.S=R.H.S
Step-by-step explanation:
Given:
x = r cosa sinb
y = r cosa cosb
z = r sina
To prove x²+y²+z²=r²
LHS given as x²+y²+z²
= r² cos²a sin²b + r² cos²a cos²b + r² sin²a
So, r² cos²a is been taken common
Now,
= r² cos²a(sin²b+cos²b) + r² sin²a
= r² cos²a*1 + r² sin²a [Because sin² a + cos² a =1 ]
= r² cos²a + r² sin²a
= r² sin²a + r² cos²a
= r²(sin²a + cos²a)
= r². 1
= r² (Proved)
Hence, LHS = RHS
Similar questions