12. If x + y + z = 8 and xy + yz + zx = 20, find the value of x3 + y3 + z3 – 3xyz.
Answers
Answered by
161
We know that,
(x+y+z)^2=x^2+y^2+z^2+2(xy+yz+zx)
X^2+y^2+z^2=(8)^2-2(20)
=64-40
=24
x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)
=(8)(24-20)
=8*4
=32
(x+y+z)^2=x^2+y^2+z^2+2(xy+yz+zx)
X^2+y^2+z^2=(8)^2-2(20)
=64-40
=24
x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)
=(8)(24-20)
=8*4
=32
Answered by
75
Answer:
The value is 32
Step-by-step explanation:
Given the value of
By the identity
Put a=x, b=y, c=z
Hence, the value is 32
Similar questions