Math, asked by RajThakur5682, 1 year ago

12. If x + y + z = 8 and xy + yz + zx = 20, find the value of x3 + y3 + z3 – 3xyz.

Answers

Answered by khushipar
161
We know that,
(x+y+z)^2=x^2+y^2+z^2+2(xy+yz+zx)
X^2+y^2+z^2=(8)^2-2(20)
=64-40
=24
x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)
=(8)(24-20)
=8*4
=32
Answered by SerenaBochenek
75

Answer:

The value is 32

Step-by-step explanation:

Given the value of

x + y + z = 8

xy + yz + zx = 20

\text{we have to find the value of }x^3+y^3+z^3-3xyz

By the identity

a^3 + b^3 + c^3 - 3abc = (a + b + c )(a^2 + b^2 + c^2 -ab - ac -bc)

a^3 + b^3 + c^3 - 3abc =(a+b+c)\{(a^2+b^2+c^2+2ab+2bc+2ac)- 3(ab+bc+ac)\}

a^3 + b^3 + c^3 - 3abc = (a+b+c)\{(a+b+c)^2 - 3(ab+bc+ac)\}  

Put a=x, b=y, c=z

x^3 + y^3 + z^3 - 3xyz = (x+y+z)\{(x+y+z)^2 - 3(xy+yz+zx)\} x^3 + y^3 + z^3 - 3xyz=8(64-3(20))=8(64-60)=8\times 4=32

Hence, the value is 32

Similar questions