12. In a right-angled triangle, it is given that A is
5
an acute angle and tan A =
12
Find the values of :
(i) cos A
(ii) sin A (iii)
COS A + sinA ———————
COS A - sin A
I will mark you the Brainliest
Answers
m=13
Step-by-step explanation:
tan A=5/12
tan A=P/B=15/12
p=5,B=12
Answer:
i) cos A = 12/13
ii) sin A = 5/13
iii) cos A + sin A = 17/13
iv) cos A - sin A = 7/13
Step-by-step explanation:
Hii mate :-)
Given, tan A = 5/12
i) We know that,
1 + tan²A = sec²A
=>1 + (5/12)² = sec²A
=>sec²A = 1 + 25/144
= (144+25)/144
= 169/144
=>sec A = √(169/144)
= 13/12
=> cos A = 1 / sec A
=> cos A = 12/13
ii) sin A = √(1-cos²A)
= √[1-(12/13)²]
= √[1-(144/169)]
= √[(169-144)/169]
= √(25/169)
=> sin A = 5/13
iii) cos A + sin A = (12/13) + (5/13)
= (12+5)/13
=> cos A + sin A = 17/13
iv) cos A - sin A = (12/13) - (5/13)
= (12-5)/13
=> cos A - sin A = 7/13
HOPE IT HELPS,
PLEASE THANK, FOLLOW AND MARK AS BRAINLIEST.