Math, asked by gehlotm0611, 5 months ago

12 men or 15 women can do a piece of work in 21
days. Find the number of days required to complete
the same work by 6 men and 10 women.
(a) 15
(b) 18
(c) 21
(d) 24
(​

Answers

Answered by sijisunil4r
0

Answer:

6 men and 10 women can complete in 15 days  

Step-by-step explanation:

Answered by EliteZeal
147

\underline{\underline{\huge{\gray{\tt{\textbf Answer :-}}}}}

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Given :-}}}}

 \:\:

  • 12 men or 15 women can do a piece of work in 21 days

 \:\:

\sf\large\bold{\orange{\underline{\blue{ To \: Find :-}}}}

 \:\:

  • Number of days required to complete the same work by 6 men and 10 women

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Solution :-}}}}

 \:\:

Given that , 12 men or 15 women can do a piece of work in 21 days

 \:\:

➜ i.e 12 men = 15 women

 \:\:

Dividing above by 12 to get one man's work in term of women

 \:\:

 \sf 1 man = \dfrac { 15 } { 12 } \: women

 \:\:

 \sf 1 man = \dfrac { 5 } { 4 } \: women

 \:\:

Multiplying above equation by 6 to get 6 men work in term of women

 \:\:

 \sf 6 men = \dfrac { 5 } { 4 } \times 6 \: women

 \:\:

 \sf 6 men = \dfrac { 15} { 2 } \: women ⚊⚊⚊⚊ ⓵

 \:\:

➜ 6 men + 10 women ⚊⚊⚊⚊ ⓶

 \:\:

Putting the values of 6 men from ⓵ to ⓶

 \:\:

➜ 6 men + 10 women

 \:\:

 \sf \dfrac { 15} { 2 } \: women + 10 \: women

 \:\:

 \sf \dfrac { 35 } { 2 } \: women ⚊⚊⚊⚊ ⓷

 \:\:

Given that 15 women can finish the work in 21 days

 \:\:

Clearly days and women are in inverse relation

i.e If the number of women are increased then the days required to finish the work will decrease

 \:\:

  • Let 1 women can finish the work in "x" days

 \:\:

So,

 \:\:

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

 \:\:

 \sf \underline { Women  } \: \: \: \: \: \: \: \: \: \: \: \: \underline { Days  }

 \sf 15 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:  21

 \sf 1 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: x

 \:\:

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

 \:\:

➜ 15 × 21 = x × 1

 \:\:

➜ x = 315 ⚊⚊⚊⚊ ⓸

 \:\:

  • Hence 1 women can finish the work in 315 days

 \:\:

From ⓷

 \:\:

 \sf \dashrightarrow \footnotesize{ 6 \: men \: \& \: 10 \: women = \dfrac { 35 } { 2 } \: women } ⚊⚊⚊⚊ (z)

 \:\:

Here also days and women are in inverse relation

 \:\:

From ⓸ we got that 1 women can finish the work in 315 days

 \:\:

  •  \bf Let \: \dfrac { 35 } { 2 } \: women \: can \: finish \: the \: work \: in \: "y" \: days

 \:\:

So,

 \:\:

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

 \:\:

 \sf \underline { Women } \: \: \: \: \: \: \: \: \: \: \: \: \underline { Days }

 \sf \: \: 1 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: 315

 \sf \dfrac { 35 } { 2 } \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: y

 \:\:

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

 \:\:

 \sf 1 \times 315 = \dfrac { 35 } { 2 } \times y

 \:\:

 \sf y = \dfrac { 315 } { \dfrac { 35 } { 2 } }

 \:\:

 \sf y = \dfrac { 315 } { 1 } \times \dfrac { 2 } { 35 }

 \:\:

➜ y = 9 × 2

 \:\:

➨ y = 18

 \:\:

 \bf Hence \: \dfrac { 35 } { 2 } \: women \: can \: finish \: the \: work \: in \: 18 \: days

 \:\:

 \bf { From \: equation \: (z) \: we \: got \: that \: 6 \: men \: and \: 10 \: women \: = \: \dfrac { 35 } { 2 } \: women }

 \:\:

Thus ,

 \:\:

  • Hence 6 men and 10 women can finish the work in 18 days

 \:\:

∴ Option (b) 18 is correct

Similar questions