12. Prove that 2+√5 is an irrational,
Answers
Answered by
0
let us suppose that 2 + under root 5 is rational no
2+under root 5 =p/q
under root 5=p/q -2
under root 5=p-2q upon q (p-2q) k nicha q
p-2q upon q is rational no
but under root 5 is not rational no
so by contradiction method 2+under root 5is rational
Answered by
0
Answer:
2+√5 is an irrational number..
Step-by-step explanation:
√5 is a irrational number and √ in irrational thing.
If √ with any number is present in any equation then the equation is considered as irrational number.
exceptional case:
If the equation is like = 60+(√5) square
then the equation will be = 60+5
= 65
If the equation is like = √5+√5
then the equation will be = (√5) whole square
= 5
Similar questions