Math, asked by peddintivenkatarao, 3 months ago

12 show that cot tita + tan tita=sectita. Cosectita​

Answers

Answered by vipashyana1
2

Answer:

cotθ+tanθ=secθcosecθ \\  \frac{1}{tan θ}  + tanθ =  \frac{1}{cosθ}  \times  \frac{1}{sinθ}  \\  \frac{1 +  {tan}^{2} θ}{tanθ}  =  \frac{1}{cosθsinθ}  \\  \frac{ {sec}^{2} θ}{tanθ}  =  \frac{1}{cosθsinθ}  \\  \frac{ \frac{1}{ {cos}^{2}θ } }{ \frac{sinθ}{cosθ} }  =  \frac{1}{cosθsinθ}  \\  \frac{1}{ {cos}^{2}θ }  \times  \frac{cosθ}{sinθ}  =  \frac{1}{cosθsinθ}  \\  \frac{1}{cosθ}  \times  \frac{1}{sinθ} =  \frac{1}{cosθsinθ}   \\  \frac{1}{cosθsinθ}  =  \frac{1}{cosθsinθ}  \\ LHS=RHS \\ Hence \: proved

Similar questions