Math, asked by nitish9876, 1 year ago

12. Show that the points A(5, 6), B(1, 5), C(2, 1)
and D(6, 2) are the vertices of a square.​

Answers

Answered by Vmankotia
16

Step-by-step explanation:

which is required ans of this question

Attachments:
Answered by harendrachoubay
40

The points A(5, 6), B(1, 5), C(2, 1)  and D(6, 2)  are the vertices of a  square, proved.

Step-by-step explanation:

Given,

The points A(5, 6), B(1, 5), C(2, 1)  and D(6, 2)  are the vertices of a  square.

Using distance formula,

\sqrt{(x_{2}-x_{1} )^{2}+(y_{2}-y_{1} )^{2}}

∴ AB = \sqrt{(1-5)^2+(5-6)^2}

= \sqrt{(-4)^2+(-1)^2} =\sqrt{16+1} =\sqrt{17}

BC = \sqrt{(2-1)^2+(1-5)^2}

=\sqrt{(1)^2+(-4)^2}=\sqrt{1+16}=\sqrt{17}

CD = \sqrt{(6-2)^2+(2-1)^2}=\sqrt{(4)^2+(1)^2}=\sqrt{16+1}=\sqrt{17}

DA  =\sqrt{(6-5)^2+(2-6)^2}\\=\sqrt{(1)^2+(-4)^2}=\sqrt{1+16}=\sqrt{17}

∴ AB = BC = CD = DA = \sqrt{17}, all sides are equa.

Diagonals,

AC = \sqrt{(2-5)^2+(6-1)^2}=\sqrt{(-3)^2+(5)^2}=\sqrt{9+25} =\sqrt{34}

BD = \sqrt{(6-1)^2+(2-5)^2}=\sqrt{(5)^2+(-3)^2}=\sqrt{25+9} =\sqrt{34}

∴ Diagonal AC = Diagonal BD =\sqrt{34}

Thus, the points A(5, 6), B(1, 5), C(2, 1)  and D(6, 2)  are the vertices of a  square, proved.

Similar questions