Math, asked by shreya768, 1 year ago

12
 \frac{12}{?4 \sqrt{3}  -  \sqrt{2 \} }

Answers

Answered by ITzBrainlyGuy
1

Answer:

the actual question is

 \frac{12}{4 \sqrt{3}  -  \sqrt{2} }

the answer

multiply the fraction by

 \frac{4 \sqrt{3}  +  \sqrt{2} }{4 \sqrt{3}  +  \sqrt{2} }

now,

 \frac{12}{4 \sqrt{3} -  \sqrt{2}   }  \times  \frac{4 \sqrt{3}  +  \sqrt{2} }{4 \sqrt{3}   +  \sqrt{2} } \\

to multiply the fractions

multiply numerator and denominator seperately

then,

 \frac{12(4 \sqrt{3}  +  \sqrt{2} )}{(4 \sqrt{3} -  \sqrt{2})(4 \sqrt{3} +  \sqrt{2})   }

using (a - b)(a+b)=a^2-b^2

simplify the product

 \frac{12(4 \sqrt{3}  +  \sqrt{2} )}{16 \times 3 - 2} \\

 \frac{12(4 \sqrt{3}  +  \sqrt{2} )}{48 - 2}

 =  \frac{12(4 \sqrt{3}  +  \sqrt{2}) }{46}  \\

 =  \frac{6(4 \sqrt{3} +  \sqrt{2} ) }{23}  \\

 =  \frac{24 \sqrt{3}  + 6 \sqrt{2} }{23}

=2.17628

hope it helps you please mark it as brainliest

Similar questions