Math, asked by vinodbandgar550, 4 months ago


12. The areas of two concentric circles are 1386 cm’ and 1886.5 cm’ respectively. Find the width of the ring​

Answers

Answered by AssasianCreed
8

Question :-

  • The areas of two concentric circles are 1386 cm’ and 1886.5 cm’ respectively. Find the width of the ring

Answer :-

  • The width of the ring = 10.7

Given :-

  • Areas of two concentric circles are 1386 cm’ and 1886.5 cm’

To find :-

  • Find the width of the ring = ?

Solution :-

Let the radius of the outer circle be R

and radius of the inner circle be r

Area of the outer circle ,

\\ \large \implies \bf \pi {R}^{2} = 1886.5

 \\ \large \implies \bf {R}^{2}  =\frac{1886.5 \times 7}{22}

 \\ \large \implies \bf  {R}^{2} =600.25

 \\ \large \implies \bf  R = 24.5 \: cm

Area of inner circle ,

\large \implies \bf  \pi {r}^{2}  = 600.25

 \\ \large \implies \bf {r}^{2}  =  \frac{600.25 \times 7}{22}

\\ \large \implies \bf  {r}^{2} = 190.10

\\ \large \implies \bf r = 13.8

Width of the ring ,

R - r = 24.5 - 13.8 = 10.7cm

Answered by Anonymous
1

  \huge { \underline{\bf{ \red{Given-}}}}

  • Area of two concentric circles are 1386 cm² and 1886.5 cm².

  \huge { \underline{\bf{ \red{To \:  find-}}}}

  • The width of the ring.

  \huge { \underline{\bf{ \red{Solution-}}}}

Let the radius of the bigger circle be R and the smaller circle be r.

 \bf{Area  \: of  \: the \:  outer\:  circle = πR²} \\  \\  \bf \implies{1886.5\:  {cm}^{2} =  \frac{22}{7} \:   {R}^{2}  } \\  \\  \bf \implies{ \frac{1886.5 \times 7}{22}  =   {R}^{2} } \\  \\ \bf \implies{ 600.25 =   {R}^{2} } \\  \\  \bf \implies{R =  \sqrt{600.25} } \\  \\   \boxed{\bf \implies \gray{R = 24.5 \: cm}}

 \bf {Area  \: of  \: inner \: circle = πr²} \\  \\  \bf \implies{1386 \:  {cm}^{2}  =  600.25 } \\  \\  \bf \implies{ \frac{1386 }{600.25}  =  {r}^{2} } \\  \\  \bf \implies {r}^{2}  = 190.10 \\  \\  \bf \implies {r =  \sqrt{190.10} } \\  \\  \boxed{ \bf \implies{ \gray{r = 13.8 \: cm}}}

Therefore,

Width of the ring = Radius of outer circle - radius of inner circle.

 \bf \implies{24.5 \: cm - 13.8 \: cm} \\   \\  \boxed{\underline{\bf \implies{ \green{10.7cm}}}}

Similar questions