12. The digit in the tens place of a two-digit number is three times that in the units place. If the digits are reversed, the new number will be 36 less than the original number. Find the original number. Check your solution.
correct answer would be marked as brainliest
Answers
Answered by
1
Step-by-step explanation:
Let the one's digit be y and tens digit be x,
Number = 10x + y
Then,x=3y⋯(i)
Reversed number = 10y + x
A.t.Q :- (10x+y)−(10y+x)=36 Put x = 3y in eq. (i)
⇒9x−9y=36
⇒x−y=4⋯(ii)
⇒3y−y=4
∴2y=4 x=3y ∴x=6
y=2
∴ Number = 62
Answered by
1
Step-by-step explanation:
Let the one's digit be y and tens digit be x,
Number = 10x + y
Then,x=3y⋯(i)
Reversed number = 10y + x
A.t.Q :- (10x+y)−(10y+x)=36 Put x = 3y in eq. (i)
⇒9x−9y=36
⇒x−y=4⋯(ii)
⇒3y−y=4
∴2y=4 x=3y ∴x=6
y=2
∴ Number = 62
Similar questions