Math, asked by avii1702223, 10 months ago

12.
The equation of the parabola where focus is
(-3,2) and directrix is x+y=4 is
a) x2 + y2 + 3xy - 2y + 1 = 0
b) x2 + y2 – 2x + 4y + 10 = 0
c) x2 + y2 – 3xy + 10x = 0
@) x2 + y2 – 2xy + 20x + 10 = 0​

Answers

Answered by MaheswariS
0

Answer:

The equation of the parabola is

\bf\,x^2-2xy+y^2+20x+10=0

option (d) is correct

Step-by-step explanation:

\text{Let p(x,y) be any point on the parabola}

\textbf{Given:}

\text{Focus S(-3,2)}

\text{Directrix is x+y-4=0}

By definition of parabola

\text{Eccentricity = $\frac{SP}{PM}$}

1=\frac{SP}{PM}

\implies\,SP=PM

\implies\sqrt{(x+3)^2+(y-2)^2}=(\frac{x+y-4}{\sqrt{1+1}})

\implies\sqrt{(x+3)^2+(y-2)^2}=(\frac{x+y-4}{\sqrt{2}})

\text{squaring on both sides}

(x+3)^2+(y-2)^2=(\frac{x^2+y^2+16+2xy-8y-8x}{2})}

\implies\;2(x^2+9+6x+y^2+4-4y)=x^2+y^2+16+2xy-8y-8x

\implies\;2x^2+2y^2+12x-8y+26=x^2+y^2+16+2xy-8y-8x

\implies\boxed{\bf\;x^2-2xy+y^2+20x+10=0}

Attachments:
Similar questions