Math, asked by varma625, 5 months ago

12. The line segment AB meets the coordinate axes in points A and B. If point P (3,6) divides
AB in the ratio 2:3, then find the points A and B.?​

Answers

Answered by sunismruti
1

Answer:

The points are, A(5,0) & B(0,15)

━━━━━━━━━━━━━

\huge\sf\blue{Given}Given

✭ Line segment AB is divided by point P(3,6) in the ratio 2:3

━━━━━━━━━━━━━

\huge\sf\gray{To \:Find}ToFind

◈ The points AB?

━━━━━━━━━━━━━

\huge\sf\purple{Steps}Steps

\large\underline{\underline{\sf Concept}}

Concept

So here we shall use the section formula to find the coordinates of A & B. As we are given that the points A & B meets the axes,i.e point A(x,0) & point B(0,y).You may refer to the attachment to get a clear idea of the section formula

━━━━━━━━━

We shall here use the section formula, that is,

\underline{\boxed{\sf x = \dfrac{m_1 x_2+m_2x_1}{m+n}}}

x=

m+n

m

1

x

2

+m

2

x

1

Similarly,

\underline{\boxed{\sf y = \dfrac{m_1y_2+m_2y_1}{m+n}}}

y=

m+n

m

1

y

2

+m

2

y

1

So here we see that,

◕ \sf m_1 \ \& \ m_1 = 2,3m

1

& m

1

=2,3

◕ \sf x_1 \ \& \ x_2 = x,0x

1

& x

2

=x,0

◕ \sf y_1 \ \& \ y_2 = 0,yy

1

& y

2

=0,y

So we shall first try to find the value of x,

➝ \sf x = \dfrac{m_1 x_2+m_2x_1}{m+n}x=

m+n

m

1

x

2

+m

2

x

1

➝ \sf 3 = \dfrac{2(0)+3(x)}{2+3}3=

2+3

2(0)+3(x)

➝ \sf 3 = \dfrac{0+3x}{5}3=

5

0+3x

➝ \sf 3\times 5 = 3x3×5=3x

➝ \sf 15 = 3x15=3x

➝ \sf \dfrac{15}{3} = x

3

15

=x

➝ \sf \red{x=5}x=5

Now it's the time to find the value of y,

➳ \sf y = \dfrac{m_1y_2+m_2y_1}{m+n}y=

m+n

m

1

y

2

+m

2

y

1

➳ \sf 6 = \dfrac{2(y)+0}{5}6=

5

2(y)+0

➳ \sf 6\times 5 = 2y+06×5=2y+0

➳ \sf 30 = 2y30=2y

➳ \sf \dfrac{30}{2} = y

2

30

=y

➳ \sf \orange{y=15}y=15

\sf \bullet\:\: A = (5,0)∙A=(5,0)

\sf \bullet\:\: B = (0,15)∙B=(0,15)

Answered by nariseamalavathi
1

Answer:

A(5,0) and (0,15)

Step-by-step explanation:

let we A as(x,0) and B as(0,y) as the AB meets the coordinate axes in points A and B

p divides AB in ratio 2:3

by section formula (mx2+nx1/m+n)(my2+ny1/m+n)

=>(3,6)=(2(0)+3(x)/3+3)(2(y)+3(0)/2+3)

=>3x/5=3. ,2y/5=6

=>x=15/3,. y=30/2

=>x=5 ,. y=15

A(x,0).=(5,0)

B(0,y)=(0,15)

Similar questions