Math, asked by pranavnadhyoutune, 1 month ago

12. The volume of a cuboid dimensions a b c i​

Answers

Answered by 19k3864
2

Answer:

Step-by-step explanation:

he dimensions of the cuboid are a,b,c.

We know that, Volume of the cuboid V=abc and surface area of the cuboid S=2(ab+bc+ac)

To prove:  

V

1

=  

S

2

[  

a

1

+  

b

1

+  

c

1

]

Consider LHS,  

V

1

=  

abc

1

...(1)

Consider RHS.

S

2

[  

a

1

+  

b

1

+  

c

1

]=  

2(ab+bc+ac)

2

[  

a

1

+  

b

1

+  

c

1

]

                               =  

ab+bc+ac

1

[  

a

1

+  

b

1

+  

c

1

]

                               =  

ab+bc+ac

1

[  

abc

ab+bc+ac

]

                               =  

abc

1

 

S

2

[  

a

1

+  

b

1

+  

c

1

]=  

abc

1

...(2)

Hence from (1) and (2) we get  

V

1

=  

S

2

[  

a

1

+  

b

1

+  

c

1

]

Answered by rumamansuri8
0

Step-by-step explanation:

If V is the volume of a cuboid of dimensions a, b, c and S is its surface area, then prove that: V1=S2(a1+b1+c1)

Similar questions