12. Use Euclid’s division algorithm to find the HCF of 615 and 154. 13. Find the HCF of 867 and 255, using Euclid’s division algorithm. 14. Use Euclid’s division algorithm to find the HCF of 1290 and 228. 15. Use Euclid’s algorithm to find the HCF of 12576 and 4052.
Answers
Answer:
hope this helps u
mark me as the brainliest if u think the explanation is good
thanks:)
Step-by-step explanation:
12.Let a=615 and b=154
By Euclids Division Lemma,
a=bq+r
615 = 154*3+153
154 = 153*1+1
153=1*153+0
Therfore the HCF of 615 and 154 is 1.
13. let a=867 and b=255
By Euclids Division Lemma,
a=bq+r
867=255*3+102
255=102*2+51
102=51*2+0
Therfore the HCF of 867 and 255 is 51
14.let a=1290 and b=228
By Euclids Division Lemma,
a=bq+r
1290 = 228*5 + 150
228 = 150*1 + 78
150 = 78*1 + 72
78 = 72*1 + 6
72 = 6*12 + 0
Therfore the HCF of 1290 and 228 is 6
15.let a=12576 and b=4052
By Euclids Division Lemma,
a=bq+r
12576=4052*3 +420
4052=420*9+272
420=272*1+148
272=148*1+124
148=124*1+24
124=24*5+4
24=4*6+0
Therfore the HCF of 12576 and 4052 is 4
12
13. let a=867 and b=255
13. let a=867 and b=255By Euclids Division Lemma,
13. let a=867 and b=255By Euclids Division Lemma, a=bq+r
13. let a=867 and b=255By Euclids Division Lemma, a=bq+r867=255*3+102
13. let a=867 and b=255By Euclids Division Lemma, a=bq+r867=255*3+102255=102*2+51
13. let a=867 and b=255By Euclids Division Lemma, a=bq+r867=255*3+102255=102*2+51102=51*2+0
13. let a=867 and b=255By Euclids Division Lemma, a=bq+r867=255*3+102255=102*2+51102=51*2+0Therfore the HCF of 867 and 255 is 51
13. let a=867 and b=255By Euclids Division Lemma, a=bq+r867=255*3+102255=102*2+51102=51*2+0Therfore the HCF of 867 and 255 is 5114.let a=1290 and b=228
13. let a=867 and b=255By Euclids Division Lemma, a=bq+r867=255*3+102255=102*2+51102=51*2+0Therfore the HCF of 867 and 255 is 5114.let a=1290 and b=228By Euclids Division Lemma,
13. let a=867 and b=255By Euclids Division Lemma, a=bq+r867=255*3+102255=102*2+51102=51*2+0Therfore the HCF of 867 and 255 is 5114.let a=1290 and b=228By Euclids Division Lemma, a=bq+r
13. let a=867 and b=255By Euclids Division Lemma, a=bq+r867=255*3+102255=102*2+51102=51*2+0Therfore the HCF of 867 and 255 is 5114.let a=1290 and b=228By Euclids Division Lemma, a=bq+r1290 = 228*5 + 150
13. let a=867 and b=255By Euclids Division Lemma, a=bq+r867=255*3+102255=102*2+51102=51*2+0Therfore the HCF of 867 and 255 is 5114.let a=1290 and b=228By Euclids Division Lemma, a=bq+r1290 = 228*5 + 150228 = 150*1 + 78
13. let a=867 and b=255By Euclids Division Lemma, a=bq+r867=255*3+102255=102*2+51102=51*2+0Therfore the HCF of 867 and 255 is 5114.let a=1290 and b=228By Euclids Division Lemma, a=bq+r1290 = 228*5 + 150228 = 150*1 + 78150 = 78*1 + 72
13. let a=867 and b=255By Euclids Division Lemma, a=bq+r867=255*3+102255=102*2+51102=51*2+0Therfore the HCF of 867 and 255 is 5114.let a=1290 and b=228By Euclids Division Lemma, a=bq+r1290 = 228*5 + 150228 = 150*1 + 78150 = 78*1 + 7278 = 72*1 + 6
13. let a=867 and b=255By Euclids Division Lemma, a=bq+r867=255*3+102255=102*2+51102=51*2+0Therfore the HCF of 867 and 255 is 5114.let a=1290 and b=228By Euclids Division Lemma, a=bq+r1290 = 228*5 + 150228 = 150*1 + 78150 = 78*1 + 7278 = 72*1 + 672 = 6*12 + 0
13. let a=867 and b=255By Euclids Division Lemma, a=bq+r867=255*3+102255=102*2+51102=51*2+0Therfore the HCF of 867 and 255 is 5114.let a=1290 and b=228By Euclids Division Lemma, a=bq+r1290 = 228*5 + 150228 = 150*1 + 78150 = 78*1 + 7278 = 72*1 + 672 = 6*12 + 0Therfore the HCF of 1290 and 228 is 6
13. let a=867 and b=255By Euclids Division Lemma, a=bq+r867=255*3+102255=102*2+51102=51*2+0Therfore the HCF of 867 and 255 is 5114.let a=1290 and b=228By Euclids Division Lemma, a=bq+r1290 = 228*5 + 150228 = 150*1 + 78150 = 78*1 + 7278 = 72*1 + 672 = 6*12 + 0Therfore the HCF of 1290 and 228 is 615.let a=12576 and b=4052
a=bq+r
a=bq+r12576=4052*3 +420
a=bq+r12576=4052*3 +4204052=420*9+272
a=bq+r12576=4052*3 +4204052=420*9+272420=272*1+148
a=bq+r12576=4052*3 +4204052=420*9+272420=272*1+148272=148*1+124
a=bq+r12576=4052*3 +4204052=420*9+272420=272*1+148272=148*1+124 148=124*1+24
a=bq+r12576=4052*3 +4204052=420*9+272420=272*1+148272=148*1+124 148=124*1+24124=24*5+4
a=bq+r12576=4052*3 +4204052=420*9+272420=272*1+148272=148*1+124 148=124*1+24124=24*5+4 24=4*6+0
a=bq+r12576=4052*3 +4204052=420*9+272420=272*1+148272=148*1+124 148=124*1+24124=24*5+4 24=4*6+0 Therfore the HCF of 12576 and 4052 is 4