(12.) Verify that x3 + y2 + 23 - 3xyz
= { (x + y + 2) [(x−y) +(3+2)2 +62–192].
Answers
Correct Question :
Verify that x³ + y³ + z³ - 3xyz = 1/2 (x + y + z) [(x - y)² + (y - z)² + (z - x)²]
Step-by-step explanation :
To verify the above equation, we have to prove that, L.H.S. = R.H.S.
So, let's start it by taking R.H.S.
⇒ 1/2 (x + y + z) [(x - y)² + (y - z)² + (z - x)²]
⇒ 1/2 (x + y + z) (x² + y² - 2xy + y² + z² - 2yz + z² + x² - 2zx)
⇒ 1/2 (x + y + z) (2x² + 2y² + 2z² - 2xy - 2yz - 2zx)
⇒1/2 ×2 (x + y + z) (x² + y² +z² - xy - yz - zx)
⇒ (x + y + z) (x² + y² +z² - xy - yz - zx)
We know that
(x + y + z)(x² + y² + z² - xy - yz - zx) = x³ + y³ + z³ - 3xyz
⇒ x³ + y³ +z³ - 3xyz
From above calculations we have R.H.S = x³ + y³ + z³ - 3xyz
If we notice the question then we found that L.H.S. is also x³ + y³ + z³ - 3xyz
x³ + y³ + z³ - 3xyz = x³ + y³ + z³ - 3xyz
Therefore,
L.H.S. = R.H.S.
Hence, proved
Question :--- Verify that x³ + y³ + z³ - 3xyz = (1/2) (x + y + z) [(x−y)² +(y-z)² +(z-x)²].
Solution :---
As we know that ,
→ x³ + y³ + z³ - 3xyz = (x + y + z) (x² + y² + z² - xy - yz - zx)
Lets Assume it as Equation (1) .
____________________________
Now, Lets Try to solve (x² + y² + z² - xy - yz - zx) First .
→ (x² + y² + z² - xy - yz - zx)
Multiplying and dividing by 2 [ or we can say that Multiplying by 1 actually as 2/2 = 1 ]
→ 1/2 [ 2* (x² + y² + z² - xy - yz - zx) ]
→ 1/2 [ 2x² + 2y² + 2z² - 2xy -2yz - 2zx ]
→ 1/2 [ x² - 2xy + y² + y² - 2yz + z² + z² - 2zx + x² ]
Now, we know that [ a² -2ab + b² = (a-b)² ]
→ 1/2 [(x - y)² + (y - z)² + (z - x)²] --------- Equation (2) .
____________________________
So, Now, putting Value of Equation (2) in Equation (1) , we get,
→ x³ + y³ + z³ - 3xyz = (x + y + z) * { 1/2 [(x - y)² + (y - z)² + (z - x)²] }
→ x³ + y³ + z³ - 3xyz = (1/2) (x + y + z) [(x−y)² +(y-z)² +(z-x)²].
✪✪ Hence Proved ✪✪
_____________________________
If You want to Prove Equation (1) Formula also, Than Just Multiply the terms inside bracket ..
Let see That one also , For Better Explanation ..
→ x³ + y³ + z³ - 3xyz = (x + y + z) (x² + y² + z² - xy - yz - zx)
Taking RHS side we get,
→ (x + y + z) (x² + y² + z² - xy - yz - zx)
→ [x(x² + y² + z² - xy - yz - zx) + y(x² + y² + z² - xy - yz - zx) + z(x² + y² + z² - xy - yz - zx) ]
→ [ x³ + xy² + xz² -x²y -xyz - zx² + yx² + y³ + yz² -xy² -y²z -xyz + zx² + zy² + z³ - xyz - yz² - z²x ]
[ All square terms will cancel now. ]