12. Water is flowing at the rate of 8 m per second through a circular pipe whose internal diameteris 2 cm, into a cylindrical tank, the radius of whose base is 40 cm. Determine the increase inthe water level in 30 minutes.Hint:2222Ex 40 x 40 x h = x1x1x800 x 30 x 60. Find h.
Answers
Given that, Water is flowing at the rate of 8 m per second through a circular pipe whose internal diameter is 2 cm.
So, it means
Radius of circular pipe, r = 1 cm
Height of circular pipe, h = 8 m = 800 cm
Now, Volume of water flows in 1 second is evaluated as
Now, we know 1 minute = 60 sec
So, 30 minutes = 30 × 60 = 1800 sec
Now, Let assume that the height of water level rise in 30 minutes in cylindrical tank whose base radius, R = 40 cm is H cm
So,
Now, According to statement,
Additional information :-
Step-by-step explanation:
\large\underline{\sf{Solution-}}
Solution−
Given that, Water is flowing at the rate of 8 m per second through a circular pipe whose internal diameter is 2 cm.
So, it means
Radius of circular pipe, r = 1 cm
Height of circular pipe, h = 8 m = 800 cm
Now, Volume of water flows in 1 second is evaluated as
\begin{gathered}\rm \: Volume_{(water \: flow\:in\:1\:sec)} = \pi \: {r}^{2} \: h \\ \end{gathered}
Volume
(waterflowin1sec)
=πr
2
h
\begin{gathered}\rm \: Volume_{(water \: flow\:in\:1\:sec)} = \pi \: (1) \: (800)\\ \end{gathered}
Volume
(waterflowin1sec)
=π(1)(800)
\begin{gathered}\rm\implies \:\rm \: Volume_{(water \: flow\:in\:1\:sec)} = 800\pi\\ \end{gathered}
⟹Volume
(waterflowin1sec)
=800π
Now, we know 1 minute = 60 sec
So, 30 minutes = 30 × 60 = 1800 sec
\begin{gathered}\rm\implies \:\rm \: Volume_{(water \: flow\:in\:1800\:sec)} = 1800 \times 800 \: \pi \: {cm}^{3} - - (1)\\ \end{gathered}
⟹Volume
(waterflowin1800sec)
=1800×800πcm
3
−−(1)
Now, Let assume that the height of water level rise in 30 minutes in cylindrical tank whose base radius, R = 40 cm is H cm
So,
\begin{gathered}\rm \: Volume_{(water \: in \: cylindrical \: tank)} = \pi \: {(R)}^{2} \: H \\ \end{gathered}
Volume
(waterincylindricaltank)
=π(R)
2
H
\begin{gathered}\rm \: Volume_{(water \: in \: cylindrical \: tank)} = \pi \: {(40)}^{2} \: H \\ \end{gathered}
Volume
(waterincylindricaltank)
=π(40)
2
H
\begin{gathered}\rm\implies \:\rm \: Volume_{(water \: in \: cylindrical \: tank)} = 1600 \: \pi\: H \: {cm}^{3} - - (2) \\ \end{gathered}
⟹Volume
(waterincylindricaltank)
=1600πHcm
3
−−(2)
Now, According to statement,
\begin{gathered}\rm \: Volume_{(water \: in \: cylindrical \: tank)} = Volume_{(water \: flow\:in\:1800\:sec)} \\ \end{gathered}
Volume
(waterincylindricaltank)
=Volume
(waterflowin1800sec)
\begin{gathered}\rm \: 1800 \times 800 \: \pi \: = \: 1600 \: \pi \: H \\ \end{gathered}
1800×800π=1600πH
\rm\implies \:H = 900 \: cm \: = \: 9 \: m⟹H=900cm=9m
\rule{190pt}{2pt}
Additional information :-
\begin{gathered}\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{CSA_{(cylinder)} = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bf{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_{(cone)} = \pi \: r \: (l + r)}\\ \\ \bigstar \: \bf{Volume_{(sphere)} = \dfrac{4}{3}\pi {r}^{3} }\\ \\ \bigstar \: \bf{Volume_{(cube)} = {(side)}^{3} }\\ \\ \bigstar \: \bf{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bf{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\ \bigstar \: \bf{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bf{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}\end{gathered}
MoreFormulae
MoreFormulae
★CSA
(cylinder)
=2πrh
★Volume
(cylinder)
=πr
2
h
★TSA
(cylinder)
=2πr(r+h)
★CSA
(cone)
=πrl
★TSA
(cone)
=πr(l+r)
★Volume
(sphere)
=
3
4
πr
3
★Volume
(cube)
=(side)
3
★CSA
(cube)
=4(side)
2
★TSA
(cube)
=6(side)
2
★Volume
(cuboid)
=lbh
★CSA
(cuboid)
=2(l+b)h
★TSA
(cuboid)
=2(lb+bh+hl)