12)Whether in politics, professional sports, or in business, Oplayersí 1. believe that because of their
importance they can ride out any issue or problem. They canct. We can all easily tick off a dozen or
so examples, but the latest is surprising. Johnson & Johnson has 2. gone through a spate of recalls of
tainted children(s Tylenol and Motrin. The Company has generally kept a low profile and even
contracted with a third party to buy up Motrin off retail shelves rather than announce an actual recall
And for the last decade it has been settling with claimants for a variety of injuries and death
allegedly due from Ortho Evra, a contraceptive 3. made by its subsidiary, Ortho McNeil. It appears
clear that the current management of J&J has not followed in the footsteps of the management that
handled the Tylenol crisis of 1982 which is 4. cited as the quintessential example of crisis
management in modern corporate history. Back then cyanide had been found in bottles of Tylenol in
the Chicago area. J&J immediately issued public warnings, issued a product recall, created tamper-
proof packaging, and before long was back in business. The Company was up-front and willing to bite
the bullet in the best interests of the public. Unfortunately that does not 5. to be the philosophy
today. There is clearly a danger in believing one is invincibility. The trust and respect of the public is
at stake, and once lost, is very difficult to retrieve.
Answers
Answer:
One of the first things you probably do every morning is look out the window to see what the weather is like. Looking outside and listening to the day’s forecast helps you decide what clothes you will wear and maybe even what you will do throughout the day. If you don’t have school and the weather looks sunny, you might visit the zoo or go on a picnic. A rainy day might make you think about visiting a museum or staying home to read.
The weather affects us in many ways. Day-to-day changes in weather can influence how we feel and the way we look at the world. Severe weather, such as tornadoes, hurricanes, and blizzards, can disrupt many people’s lives because of the destruction they cause.
The term “weather” refers to the temporary conditions of the atmosphere, the layer of air that surrounds the Earth. We usually think of weather in terms of the state of the atmosphere in our own part of the world. But weather works like dropping a pebble in water—the ripples eventually affect water far away from where the pebble was dropped. The same happens with weather around the globe. Weather in your region will eventually affect the weather hundreds or thousands of kilometers away. For example, a snowstorm around Winnipeg, Manitoba, Canada, might eventually reach Chicago, Illinois, as it moves southeast through the U.S.
Weather doesn’t just stay in one place. It moves, and changes from hour to hour or day to day. Over many years, certain conditions become familiar weather in an area. The average weather in a specific region, as well as its variations and extremes over many years, is called climate. For example, the city of Las Vegas in the U.S. state of Nevada is generally dry and hot. Honolulu, the capital of the U.S. state of Hawaii, is also hot, but much more humid and rainy.
Climate changes, just like weather. However, climate change can take hundreds or even thousands of years. Today, the Sahara Desert in northern Africa is the largest desert in the world. However, several thousand years ago, the climate in the Sahara was quite different. This “Green Sahara” experienced frequent rainy weather.
What Makes Weather
There are six main components, or parts, of weather. They are temperature, atmospheric pressure, wind, humidity, precipitation, and cloudiness. Together, these components describe the weather at any given time. These changing components, along with the knowledge of atmospheric processes, help meteorologists—scientists who study weather—forecast what the weather will be in the near future.
Temperature is measured with a thermometer and refers to how hot or cold the atmosphere is. Meteorologists report temperature two ways: in Celsius (C) and Fahrenheit (F). The United States uses the Fahrenheit system; in other parts of the world, Celsius is used. Almost all scientists measure temperature using the Celsius scale.
Temperature is a relative measurement. An afternoon at 70 degrees Fahrenheit, for example, would seem cool after several days of 95 degrees Fahrenheit, but it would seem warm after temperatures around 32 degrees Fahrenheit. The coldest weather usually happens near the poles, while the warmest weather usually happens near the Equator.
Atmospheric pressure is the weight of the atmosphere overhead. Changes in atmospheric pressure signal shifts in the weather. A high-pressure system usually brings cool temperatures and clear skies. A low-pressure system can bring warmer weather, storms, and rain.
Meteorologists express atmospheric pressure in a unit of measurement called an atmosphere. Atmospheres are measured in millibars or inches of mercury. Average atmospheric pressure at sea level is about one atmosphere (about 1,013 millibars, or 29.9 inches). An average low-pressure system, or cyclone, measures about 995 millibars (29.4 inches). A typical high-pressure system, or anticyclone, usually reaches 1,030 millibars (30.4 inches). The word “cyclone” refers to air that rotates in a circle, like a wheel.
Atmospheric pressure changes with <altitude. The atmospheric pressure is much lower at high altitudes. The air pressure on top of Mount Kilimanjaro, Tanzania—which is 5,895 meters (19,344 feet) tall—is 40 percent of the air pressure at sea level. The weather is much colder. The weather at the base of Mount Kilimanjaro is tropical, but the top of the mountain has ice and snow.
Wind is the movement of air. Wind forms because of differences in temperature and atmospheric pressure between nearby regions. Winds tend to blow from areas of high pressure, where it’s colder, to areas of low pressure, where it’s warmer