Math, asked by rashi80, 1 year ago

12(x-2)^2-25(x-2)(y+1)+12(y+1)^2​

Answers

Answered by Kusumsahu7
1

Equation at the end of step  1  :

((12•((x-2)2))-((25•(x-2))•(y+1)))+12•(y+1)2

Step  2  :

Equation at the end of step  2  :

((12•((x-2)2))-(25•(x-2)•(y+1)))+12•(y+1)2

Step  3  :

Equation at the end of step  3  :

((12•((x-2)2))-25•(x-2)•(y+1))+12•(y+1)2

Step  4  :

Equation at the end of step  4  :

(12•(x-2)2-25•(x-2)•(y+1))+12•(y+1)2

Step  5  :

 5.1    Evaluate :  (y+1)2   =  y2+2y+1 

Trying to factor by pulling out :

 5.2      Factoring:  12x2-25xy-73x+12y2+74y+110 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  -25xy-73x 

Group 2:  12y2+12x2 

Group 3:  74y+110 

Pull out from each group separately :

Group 1:   (25y+73) • (-x)

Group 2:   (x2+y2) • (12)

Group 3:   (37y+55) • (2)

Looking for common sub-expressions : 

Group 1:   (25y+73) • (-x)

Group 3:   (37y+55) • (2)

Group 2:   (x2+y2) • (12)

Bad news !! Factoring by pulling out fails : 

The groups have no common factor and can not be added up to form a multiplication.

Final result :

12x2 - 25xy - 73x + 12y2 + 74y + 110

Answered by sahil5688
1

12 \times  {(x - 2)}^{2}  - 25(x - 2)(y + 1 ) + 12 {(y + 1)}^{2}
Similar questions