121-320+(-211)-(-231)
Answers
Answer:
The angles of a quadrilateral are in the ratio 2:3:4:6 . Find the measures of each of the four angles .
Solution :
Given
• Angles of quadrilateral are in ratio of 2:3:4:6
To Find
• All the angles of quadrilateral
Let us find all the angles
• Let the unknown entity be " x "
Now , the angles become 2x , 3x , 4x and 6x
\star \: \underline {\sf{Angle\:sum\: property\:of\:quadrilateral\:=\:{360}^{\degree}}}⋆
Anglesumpropertyofquadrilateral=360
°
Now , According To The Question :
→ 2x + 3x + 4x + 6x = 360°
→ 15x = 360°
→ x = 360°/15
→ x = 24°
\:\:\:\: \bigstar \large \underline {\sf{Value\:of\:x\:is\:{24}^{\degree}}}★
Valueofxis24
°
• Measure of each angle :
→ Angle 1 = 2x = 2(24) = 48°
→ Angle 2 = 3x = 3(24) = 72°
→ Angle 3 = 4x = 4(24) = 96°
→ Angle 4 = 6x = 6(24) = 144°
_______________________
Step-by-step explanation:
121-320-211+231
=121+231-320-211
=252-531
= -279.