Physics, asked by dudejasumika, 7 months ago

121 - A particle moves from position r1 = (3i +2j-6k) to
postion r2 = (14i + 13j + 9k) N.Under the action of force
(4i + j + 3k). Calculate the work done

Answers

Answered by Anonymous
2

Answer:

 \boxed{\mathfrak{Work \ done = 100 \ J}}

Given:

  \rm \vec{r_1} = 3 \hat{i}  + 2\hat{j}  - 6 \hat{k}

  \rm \vec{r_2} = 14 \hat{i}  + 13\hat{j}   +  9 \hat{k}

  \rm \overrightarrow{F} = 4 \hat{i}  + \hat{j}   +  3 \hat{k}

Explanation:

Work done (W) is dot product of force vector and displacement vector i.e.

 \boxed{ \bold{ W = \overrightarrow{F}.\overrightarrow{d}}}

So,

  \rm \implies W = \overrightarrow{F}.(\overrightarrow{r_2} - \overrightarrow{r_1}) \\  \\   \rm \implies W = (4\hat{i} +  \hat{j} + 3 \hat{k}).(14\hat{i} +  13\hat{j} + 9 \hat{k} - (3\hat{i} +  2\hat{j}  -  6 \hat{k}) \\  \\  \rm \implies W = (4\hat{i} +  \hat{j} + 3 \hat{k}).(14\hat{i} +  13\hat{j} + 9 \hat{k} - 3\hat{i}  -  2\hat{j}   +  6 \hat{k}) \\  \\  \rm \implies W = (4\hat{i} +  \hat{j} + 3 \hat{k}).(11\hat{i} +  11\hat{j} + 15 \hat{k}) \\  \\ \rm \implies W =4 \times 11 + 1 \times 11 + 3 \times 15 \\  \\ \rm \implies W =44 + 11 + 45 \\  \\ \rm \implies W =100 \: J

Similar questions