Math, asked by ayush1191, 10 months ago

12⁴×9³×4/6³×8²×2raise to the power 7 PLEASE I WILL MARK AS BRAINLIEST​

Attachments:

Answers

Answered by sakibmalik98733
1

Answer: 3^7

Step-by-step explanation:

(12)^4 = (4×3)^4=4^4×3^4=2^8×3^4

(9)³=(3²)³=(3)^6

4=2²

6³=(3×2)³=3³×2³

8²=(2³)²=2^6

2=2^1

Now,

2^8×3^4×3^6×2²/3³×2³×2^6×2^1

2^8×3^4×3^6×2²×3^-3×2^-3×2^-6×2^-1

2°×3^7

3^7

so, Mark me brainliest

Answered by TRISHNADEVI
2

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: ANSWER \:  \: } \mid}}}}}

  \:  \:  \:  \:  \:  \mathtt{\frac{12 {}^{4}  \times 9 {}^{3} \times 4 }{6 {}^{3}  \times 8 {}^{2} \times 2 } } \\  \\   \mathtt{=  \frac{(4 \times 3) {}^{4} \times (3 {}^{2} ) {}^{3}   \times (2) {}^{2} }{(2 \times 3) {}^{3}  \times (2 {}^{3} ) {}^{2}  \times 2} } \\  \\    \mathtt{= \frac{(4) {}^{4} \times (3) {}^{4}  \times (3) {}^{6}  \times (2) {}^{2}  }{(2) {}^{3}  \times (3) {}^{3} \times (2) {}^{6}  \times 2 }  }\\  \\   \mathtt{=  \frac{(2{}^{2} ) {}^{4}  \times (3) {}^{4} \times (3) {}^{6}   \times (2) {}^{2} }{(2) {}^{3} \times (3) {}^{3} \times (2) {}^{6}    \times 2}  }\\  \\   \mathtt{ = \frac{(2 ) {}^{8}  \times (3) {}^{4} \times (3) {}^{6}   \times (2) {}^{2} }{(2) {}^{3} \times (3) {}^{3} \times (2) {}^{6}    \times 2}}  \\  \\  \mathtt{ =  \frac{(2) {}^{8} \times (2) {}^{2}  \times (3) {}^{4} \times (3) {}^{6}   }{2 \times (2) {}^{3} \times (2) {}^{6}  \times (3) {}^{3}  }}  \\  \\   \mathtt{=  \frac{ \{(2) {}^{8 + 2}  \} \times  \{(3) {}^{4 + 6 }  \}}{ \{(2) {}^{1 + 3 + 6 }  \} \times (3) {}^{3} } } \\  \\   \mathtt{=  \frac{ \cancel{(2) {}^{10}  }\times (3 ){}^{10} }{ \cancel{(2) {}^{10} }\times (3) {}^{3}  }}  \\  \\ \mathtt{  =  \frac{(3) {}^{10} }{(3) {}^{3} }}  \\  \\  \mathtt{=  3 {}^{ 10 - 3} } \\  \\   \mathtt{= 3 {}^{7}}  \\  \\  \mathtt{=  2187}

 \underline{ \underline{ \mathcal{ \red{ : \star :  \:  IDENTITIES \:  \:  \:   USED  \:  :  \star : }}}} \\  \\  \mathsf{1. \: (a \times b) {}^{m} =  a {}^{m}  \times  b{}^{n} } \\  \\ \mathsf{2. \: (a {}^{m} ) {}^{n}  = a {}^{mn} } \\  \\ \mathsf{3. \: a {}^{m}  \times a {}^{n} = a {}^{ m+ n}  } \\  \\ \mathsf{4. \:  \frac{a {}^{m} }{a {}^{n} } = a {}^{m - n}  }

Similar questions