Math, asked by pateljessica229, 2 months ago

12⁴×9⁴×4/6³×8²×27 simplify and write in simplified form.​

Answers

Answered by MagicalBeast
4

To find :

\sf  \: Value  \: of  \: \dfrac{12^4  \times 9^4 \times  4 }{6^3  \times 8^2  \times 27}

Identity used :

\sf \bullet  \: \dfrac{a^m}{a^n} \:  =  \: a^{m-n}

\sf \bullet \:  a^m \times  a^n = a^{m+n}

\sf \bullet  \: (a^m)^{n}  = a^{mn}

Solution :

 \implies \dfrac{12^4  \times 9^4 \times  4 }{6^3  \times 8^2  \times 27}

 \implies \dfrac{(3 \times 2 \times 2)^4  \times ( {3}^{2} )^4 \times   {2}^{2} }{(2 \times 3)^3  \times ( {2}^{3} )^2  \times  {3}^{3} }

 \implies \dfrac{(3)^{4} \times ( {2}^{2} )^4  \times ( {3}^{8} ) \times   {2}^{2} }{ {2}^{3}  \times 3^3  \times {2}^{6}   \times  {3}^{3} }

 \implies \dfrac{3^{(4 + 8)} \times ( {2}^{8} )   \times   {2}^{2} }{ {2}^{(3 + 6)}   \times  {3}^{(3 + 3)} }

 \implies \dfrac{3^{12} \times  {2}^{(8 + 2)}   }{ {2}^{9}   \times  {3}^{6} }

\implies \dfrac{3^{12 } \times  {2}^{10}   }{ {2}^{9}   \times  {3}^{6} }

\implies 3^{(12 - 6) } \times  {2}^{(10 - 9)}

\implies 3^{6} \times  {2}

\implies  \: 1458

ANSWER : 1458

Similar questions