Math, asked by Robinregi, 1 year ago

125-1/3[125 1/3-125 2/3]

Attachments:

Answers

Answered by DaIncredible
53
Hey friend,
Here is the answer you were looking for:
 {125}^{ -  \frac{1}{3} } ( {125}^{ \frac{1}{3} }  -  {125}^{ \frac{2}{3} } ) \\  \\   =  {125}^{ -  \frac{1}{3} }  \times  {125}^{ \frac{1}{3} }  -  {125}^{ -  \frac{1}{3} }  \times  {125}^{ \frac{2}{3} }  \\

Using the identity :
 {a}^{x}  \times  {a}^{y}  =  {a}^{x + y}
 =  {125}^{ -  \frac{1}{3}  +  \frac{1}{3} }  -  {125}^{ -  \frac{1}{3}  +  \frac{2}{3} }  \\  \\  =  {125}^{0}  -  {125}^{ \frac{ - 1 + 2}{3} }  \\  \\  = 1 -  {125}^{ \frac{1}{3} }  \\  \\  = 1 -  {5}^{3 \times  \frac{1}{3} }  \\  \\  = 1 - 5 \\  \\  =  - 4

Hope this helps!!

If you have any doubt regarding to my answer, feel free to ask in the comment section or inbox me if needed.

@Mahak24

Thanks...
☺☺

DaIncredible: ~mam~
DaIncredible: nothing like great concept.. just another method... your concept was amazing
DaIncredible: no mam -_-
DaIncredible: ^_^
DaIncredible: no one is mam here
DaIncredible: me... Mahak
Answered by AmoliAcharya
13

Given: Here we have given the equation  {125}^{ - \frac{1}{3} } ( {125}^{ \frac{1}{3} } - {125}^{ \frac{2}{3} } ) \\ \\

To find: we have to find the equivalent answer {125}^{ - \frac{1}{3} } ( {125}^{ \frac{1}{3} } - {125}^{ \frac{2}{3} } ) \\ \\

Solution:

Here we have given the equation

{125}^{ - \frac{1}{3} } ( {125}^{ \frac{1}{3} } - {125}^{ \frac{2}{3} } ) \\ \\ = {125}^{ - \frac{1}{3} } \times {125}^{ \frac{1}{3} } - {125}^{ - \frac{1}{3} } \times {125}^{ \frac{2}{3} } \\

we will use the identity :

{a}^{x} \times {a}^{y} = {a}^{x + y} = {125}^{ - \frac{1}{3} + \frac{1}{3} } - {125}^{ - \frac{1}{3} + \frac{2}{3} } \\ \\ = {125}^{0} - {125}^{ \frac{ - 1 + 2}{3} } \\ \\ = 1 - {125}^{ \frac{1}{3} } \\ \\ = 1 - {5}^{3 \times \frac{1}{3} } \\ \\ = 1 - 5 \\ \\ = - 4

Final answer:

Hence the answer is -4

Similar questions