Math, asked by mona122353, 11 months ago

125 + 2 root 27 aur minus 5 root 5 minus root 3​

Answers

Answered by yuvraj3740
18

Step-by-step explanation:

first we have to make factors and then simplify it

Attachments:
Answered by pinquancaro
25

The expression is \sqrt{125}+2\sqrt{27}-5\sqrt{5}-\sqrt{3}=5\sqrt{3}.

Step-by-step explanation:

Given : Expression \sqrt{125}+2\sqrt{27}-5\sqrt{5}-\sqrt{3}.

To find : Simplify the expression ?

Solution :

Re-write the expression as,

\sqrt{125}+2\sqrt{27}-5\sqrt{5}-\sqrt{3}=\sqrt{5\times 5\times 5}+2\sqrt{3\times 3\times 3}-5\sqrt{5}-\sqrt{3}

\sqrt{125}+2\sqrt{27}-5\sqrt{5}-\sqrt{3}=\sqrt{(5\sqrt{5})^2}+6\sqrt{3}-5\sqrt{5}-\sqrt{3}

\sqrt{125}+2\sqrt{27}-5\sqrt{5}-\sqrt{3}=5\sqrt{5}+5\sqrt{3}-5\sqrt{5}

\sqrt{125}+2\sqrt{27}-5\sqrt{5}-\sqrt{3}=5\sqrt{3}

Therefore, the expression is \sqrt{125}+2\sqrt{27}-5\sqrt{5}-\sqrt{3}=5\sqrt{3}.

#Learn more

Root 5 + root 3 by root 5 minus root 3 is equal to a + b root 15 find the value of a, b

https://brainly.in/question/4694692

Similar questions