Math, asked by nidhavyaanikaho, 1 year ago

125a3-27b3+75a2b-45ab2

Answers

Answered by Agastya0606
7

Given: The expression 125a^3 - 27b^3 + 75a^2b - 45ab^2

To find: Factorise this.

Solution:

  • Now we have given:  

                 125a^3 - 27b^3 + 75a^2b - 45ab^2

  • We can rewrite it as:

                 (125a^3 − 27b^3) + 15ab(5a − 3b)

                 ((5a)^3 − (3b)^3) + 15ab(5a − 3b)

  • Now we know the formula:

                 a^3 - b^3 = (a-b)(a^2+ab+b^2)

  • So using this, we get:

                 ((5a−3b) ( (5a)^2 + (3b)^2 + (5a)(3b) )) + 15ab(5a − 3b)

  • Simplifying it, we get:

                 (5a−3b)(25a^2 + 9b^2 + 15ab) + 15ab(5a − 3b)

                 (5a−3b)((25a^2 + 9b^2 + 15ab) + 15ab)

                 (5a−3b)(25a^2 + 9b^2 +30ab)

                 (5a−3b)((5a)^2 + (3b)^2 + 2(5a)(3b))

                 (5a − 3b)(5a + 3b)^2

                 (5a − 3b)(5a + 3b)(5a + 3b)

Answer:

       So the factors of given expression are (5a − 3b)(5a + 3b)(5a + 3b)

Answered by koralkaratharva23
0

Answer:

(5a-3b) (5a+3b) (5a+3b)

Similar questions