128^-2/7-(625^-3)^-1/4+14(2401)^-1/4
Answers
Answered by
62
128^{-2/7} - (625^{-3})^{-1/4} + 14(2401)^{-1/4}
= (2^7)^{-2/7} - (5^4)^{3/4} + 14(7^4)^{-1/4}
= (2)^{-2} - (5^3) + 14(7)^{-1}
= \frac{1}{2^2} - 5^3+ \frac{14}{7}
= \frac{1}{4} - 125+ 2
= \frac{1}{4} - 123
= \frac{1 - 492}{4}
= \frac{- 491}{4}
= (2^7)^{-2/7} - (5^4)^{3/4} + 14(7^4)^{-1/4}
= (2)^{-2} - (5^3) + 14(7)^{-1}
= \frac{1}{2^2} - 5^3+ \frac{14}{7}
= \frac{1}{4} - 125+ 2
= \frac{1}{4} - 123
= \frac{1 - 492}{4}
= \frac{- 491}{4}
Answered by
15
128^{-2/7} - (625^{-3})^{-1/4} + 14(2401)^{-1/4}
= (2^7)^{-2/7} - (5^4)^{3/4} + 14(7^4)^{-1/4}
= (2)^{-2} - (5^3) + 14(7)^{-1}
= \frac{1}{2^2} - 5^3+ \frac{14}{7}
= \frac{1}{4} - 125+ 2
= \frac{1}{4} - 123
= \frac{1 - 492}{4}
= \frac{- 491}{4}
Similar questions