Math, asked by Mayank1234yy, 11 months ago

12a²b- 9ab² + 6ab. factorise the following

Answers

Answered by charliejaguars2002
17

Answer:

\Large\boxed{3ab(4a-3b+2)}

Step-by-step explanation:

Given:

\Large\boxed{\textnormal{LESSON: FINDING THE FACTORISE!}}

To find the factors of 12a²b-9ab²+6ab from left to right numbers. By using with distributive property.

Solutions:

First, thing you do is use exponent rule to expand the expression.

\Large\boxed{\textnormal{EXPONENT RULES}}

\displaystyle A^B^+^C=A^B A^C

\displaystyle ABB=AB^2, AAB=A^2B

Rewrite the whole problem down.

\displaystyle 12AAB-9ABB+6AB

Multiply the numbers from left to right. (Rewrite.)

\displaystyle 3*2=6

\displaystyle 3*3=9

\displaystyle 3*4=12

\displaystyle 4*3AAB+3*3ABB+2*3AB

Then, you have to solve with the factor of the common term of 3ab.

\displaystyle 4*3AAB+3*3ABB+2*3AB=\boxed{3ab(4a-3b+2)}

\Large\boxed{3ab(4a-3b+2)}

Hence, the correct answer is 3ab(4a-3b+2).

Answered by AbhijithPrakash
10

Answer:

\mathrm{Factor}\:12a^2b-9ab^2+6ab:\quad 3ab\left(4a-3b+2\right)

Step-by-step explanation:

12a^2b-9ab^2+6ab

\gray{\mathrm{Apply\:exponent\:rule}:\quad \:a^{b+c}=a^ba^c}

\gray{ab^2=abb,\:a^2b=aab}

=12aab-9abb+6ab

\gray{\mathrm{Rewrite\:}6\mathrm{\:as\:}2\cdot \:3}

\gray{\mathrm{Rewrite\:}-9\mathrm{\:as\:}3\cdot \:3}

\gray{\mathrm{Rewrite\:}12\mathrm{\:as\:}4\cdot \:3}

=4\cdot \:3aab+3\cdot \:3abb+2\cdot \:3ab

\gray{\mathrm{Factor\:out\:common\:term\:}3ab}

=3ab\left(4a-3b+2\right)

Similar questions