Math, asked by TheLifeRacer, 7 months ago

12th board important question! ...

Differentiate it .​

Attachments:

Answers

Answered by Anonymous
29

Question :

Solve :

\tt\sqrt{a+x}\dfrac{dy}{dx}+x=0

Solution :

We have ,

\sf\sqrt{a+x}\dfrac{dy}{dx}+x=0

\sf\implies\sqrt{a+x}\dfrac{dy}{dx}=-x

\sf\implies\dfrac{dy}{dx}=\dfrac{-x}{\sqrt{a+x}}

\sf\implies\:dy=\dfrac{-x}{\sqrt{a+x}}dx

Now integrate on both sides

\sf\int\:dy=-\int\dfrac{x}{\sqrt{a+x}}dx

\sf\int\:dy=-[\int\dfrac{a+x-a}{\sqrt{a+x}}dx]

\sf\:y=-\int\dfrac{a+x}{\sqrt{a+x}}dx+\int\dfrac{a}{\sqrt{a+x}}dx

\sf\:y=-\int(a+x)^{\frac{1}{2}}dx+\int\:a(a+x)^{\frac{-1}{2}}dx

We know that

\sf\int\:x^n\:dx=\dfrac{x^{n+1}}{n+1}

Then,

\sf\:y=-\int(a+x)^{\frac{1}{2}}dx+\int\:a(a+x)^{\frac{-1}{2}}dx

\sf\:y=-\dfrac{(a+x)^{\frac{1}{2}+1}}{\frac{1}{2}+1}+a\dfrac{(a+x)^{\frac{-1}{2}+1}}{\frac{-1}{2}+1}+c

\sf\:y=-\dfrac{(a+x)^{\frac{3}{2}}}{\frac{3}{2}}+a\dfrac{(a+x)^{\frac{1}{2}}}{\frac{1}{2}}+c

\tt\:y=\dfrac{-2}{3}(a+x)^{\frac{3}{2}}+2a(a+x)^{\frac{1}{2}}+c

It is the required solution!

Answered by ItzDeadDeal
9

Answer:

Question :

Solve :

\tt\sqrt{a+x}\dfrac{dy}{dx}+x=0 </p><p>

Solution :

We have ,

\sf\sqrt{a+x}\dfrac{dy}{dx}+x=0

\sf\implies\sqrt \orange{a+x}\dfrac{dy}{dx}

\sf\implies\dfrac{dy}{dx}=\dfrac{-x}{\sqrt{a+x}}

\sf\implies\:dy=\dfrac{-x}{\sqrt{a+x}}

Now integrate on both sides

\sf\int\:dy=-\int\dfrac{x}{\sqrt{a+x}}

\sf\int\:dy=-[\int\dfrac{a+x-a}{\sqrt{a+x}}

\sf\:y=-\int\dfrac{a+x}{\sqrt{a+x}}dx+\int\dfrac{a}{\sqrt{a+x}}

\sf\:y=-\int(a+x)^{\frac{1}{2}}dx+\int\:a(a+x)^{\frac{-1}{2}}

We know that

\sf\int\:x^n\:dx=\dfrac \purple{x^{n+1}}{n+1}

\sf\:y=-\int(a+x)^{\frac{1}{2}}dx+\int\:a(a+x)^{\frac{-1}{2}}

\sf\:y=-\dfrac \pink{(a+x)^{\frac{1}{2}+1}}{\frac{1}{2}+1}+a\dfrac \gray{(a+x)^{\frac{-1}{2}+1}}{\frac{-1}{2}+1}+cy=− </p><p>

\sf\:y=-\dfrac \red{(a+x)^{\frac \green{3}{2}}}{\frac{3}{2}}+a\dfrac{(a+x)^{\frac{1}{2}}}{\frac{1}{2}}+cy=−

\tt\:y=\dfrac \blue{-2} \red{3} \gray(a+x)^{\frac{3}{2}}+2a(a+x)^{\frac{1}{2}}

It is the required solution !!!

Similar questions