Math, asked by azar77401, 10 months ago

(12x-1)(6x-1)(4x-1)(3x-1) =5
Solve for x

Answers

Answered by sammane2514
1

Answer:

x =  \frac{1}{2}  \: or \: x =  \frac{ - 1}{12}

It really takes a lot of effort to type so much. If you feel it's most appropriate, please mark as brianliest. Question was really good though.

Step-by-step explanation:

(12x - 1)(6x - 1)(4x - 1)(3x - 1) =5 \\  (2 \times 3 \times 4)(12x - 1)(6x - 1)(4x - 1)(3x - 1) =5(2 \times 3 \times 4) \\ (12x - 1)2(6x - 1)3(4x - 1)4(3x - 1) =5(2 \times 3 \times 4 \\ (12x - 1)(12x - 2)(12x - 3)(12x - 4) =(5)(24) \\ (12x - 1)(12x - 1 - 1)(12x - 1 - 2)(12x - 1 - 3) =(5)(24) \\ Now \: lets \: take \: (12x-1) as s \\ therefore \\ (s)(s - 1)(s - 2)(s - 3) = 120 \\ (s)(s - 3)(s - 1)(s - 2) = 120 \\ ( {s}^{2}  - 3s)( {s}^{2}  - 3s + 2) = 120 \\ Now \: lets \: take \: ( {s}^{2} - 3s ) as r \\ therefore \\ (r)(r + 2) = 120 \\  {r}^{2} + 2r = 120  \\ Adding 1 on both sides \\  {r}^{2}  + 2r + 1 = 120 + 1 \\  {(r + 1)}^{2}  = 121 \\  {(r + 1)}^{2}  =  {11}^{2}  \\ (r + 1) = 11 \: or \: (r + 1) = ( - 11) \\ r = 10 \: or \: r = ( - 12) \\ As \: r =  ({s}^{2}  - 3s) \\ ({s}^{2}  - 3s) = 10 \: or \: ({s}^{2}  - 3s) = ( - 12) \\ Now \: lets \: solve \: for \:  ({s}^{2}  - 3s)  =  ( - 12) :  \\ Therefore \: ({s}^{2}  - 3s) -  ( - 12) = 0 \\ {s}^{2}  - 3s +  12 = 0 \\ Solving by Quadratic formula i.e. \\ x =  \frac{( - b) \frac{ + }{ - } \sqrt{ {b}^{2} - 4ac }  }{2a}  \\ we \: get \:  \\ s =  \frac{( 3) \frac{ + }{ - } \sqrt{ - 27}  }{2}  \\ Here \: we \: get \: negative \: root \: in \: solution \\ Neglecting \: negative \: root \: as \: solution \: we \: solve \: for \: another \: value \: which \: is:  \\ ({s}^{2}  - 3s) = 10  \\ Hence:  \\ {s}^{2}  - 3s - 10 = 0 \\ (s - 5)(s + 2) = 0 \\ s = (5) \: or \: s = ( - 2) \\ As \: s = (12x - 1) \: we \: get \\ 12x - 1 = 5 \: or \: 12x - 1 = ( - 2) \\ x =  \frac{6}{12}  \: or \: x =  \frac{ - 1}{12}  \\ x =  \frac{1}{2}  \: or \: x =  \frac{ - 1}{12} </p><p>  \\  \\  \\  \\ If \: we \: consider \: the \: negative \: root \: as \: solution \: of \: s \: by \: taking \: imaginary \: number \: 'i' \: where \: i =  \sqrt{( - 1)} \: and \: go forward.... \\ s =  \frac{( 3) \frac{ + }{ - } \sqrt{ - 27}  }{2} \\ s =  \frac{( 3) \frac{ + }{ - } \sqrt{ 27}i  }{2} \\ s =  \frac{3 +  \sqrt{27}i }{2}  \: or \: s =  \frac{3  -   \sqrt{27}i }{2} \\ As \: s = (12 - 1) \:  \:  \: we \: get \\ 12x - 1 =  \frac{3 +  \sqrt{27}i }{2}  \: or \: 12x - 1 =  \frac{3  -   \sqrt{27}i }{2} \\ x =  \frac{5 + 3 \sqrt{3}i }{24}  \: or \: x =  \frac{5  -  3 \sqrt{3}i }{24}  \\ I \: tried \: substituting \: these \: values \: of \: imaginary \: roots \: in \: equation. \: It  \: does \: not  \: satisfy  \: the \:  equation. \\  Hence \: we  \: can  \: cancel  \: out \:  these \:  imaginary \:  roots! \\  \\ Hence \: solution \: of \: given \: equation \: is \\ x =  \frac{1}{2}  \: or \: x =  \frac{ - 1}{12}

Similar questions