(12xy-10y²-18x²+14x²+12y²+9x)-(5y²-x²+xy)
Answers
Factorize.
5a² + a = Common factor. We take common factor to
a (5a + 1)
m² + 2mx + x² = Perfect square trinomial
(m + x) ²
a² + a -ab - b Factor community by grouping of terms (we group)
(a² + a) - (ab + b) = factor of We take common a And b
a (a + 1) - b (a + 1) = common factor (a + b)
(a + b) (a - b)
x² - 36 = Difference of squares
(x + 6) (x - 6)
9x² - 6xy + y² = Perfect square trinomial
(3x + y) ²
6x² - x - 2 = Trinomial of the form ax² + bx + c
3 2
twenty-one
(3x - 2) (2x + 1)
1 + x³ = sum of cubes
1³ + x³ =
(1 + x) (1 - x + x²)
27a³ - 1 = Difference of cubes
3³a³ - 1³ =
(3a - 1) (3²a² + 3a + 1²) =
(3a - 1) (9a² + 3a + 1)
x⁵ + m⁵ = Sum of odd powers
(x + m) (x⁴ - x³m + x²m² - xm³ + m⁴)
a³ - 3a²b + 5ab² = Common factor we take common factor to
a (a² - 3ab + 5b) ²
2xy - 6y + xz - 3z = Common factor by grouping. (we group)
(2xy - 6y) + (xz - 3z) = Factor of We take common 2y and z
2y (x - 3) + z (x - 3) = Common Factor (x - 3)
(x - 3) (2y + z)
1 - 4b + 4b² = Trinomial squared peerfect
(1 - 2b) ²
4x⁴ + 3x²y² + y⁴ Perfect square trinomial by + y -
+ x²y² - x²y²
--------------------------------
(4x⁴ + 4x²y² + y⁴) - x²y² The perfect square trinomial parenthesis
(2x² + y²) ² - x²y² = We have a difference of squares
(2x² + y² + xy) (2x² + y² - xy)
x⁸ - 6x⁴y⁴ + y⁸ = The same previous case
+ 4x⁴y⁴ - 4x⁴y⁴
-------------------------------------
(x⁸ - 2x⁴y⁴ + y⁸) - 4x⁴y⁴ = The parentheses is a trinomial squared. perf
(x⁴ - y⁴) ² - 4x⁴y⁴ = We have difference of squares
(x⁴ - y⁴ + 2x²y²) (x⁴ - y⁴ - 2x²y²)
a² - a - 30 = Trinomial of the form x² + bx + c
(a - 6) (a + 5)
15m² + 11m - 14 = Trinomial of the form ax² + bx + c
5 + 7
3 - 2
(5m + 7) (3m - 2)
a⁶ + 1 Sum of cubes
(a²) ³ + 1³ =
(a² + 1) ((a²) ² - a² + 1) =
(a² + 1) (a⁴ - a² + 1)
8m³ - 27y⁶ = Difference of cubes
2³m³ - 3³ (y²) ³ =
(2m - 3y²) (2²m² + (2m) (3y²) + 3² (y²) ²) =
(2m - 3y²) (4m² + 6my² + 9m⁴)
16a² -24ab + 9b² = Perfect square trinomial
(4a - 3 b) ²
1 + a⁷ = Sum of equal odd powers
1⁷ + a⁷ =
(1 + a) (1 - a + a² - a³ + a⁴ - a⁵ + a⁶)
1 - m² = Difference of squares
(1 + m) (1 -m)
x⁴ + 4x² - 21 = Trinomial of the form x² + bx + c
(x² + 7) (x² - 3)
I leave you the last ones because I get tired