12y^2-40y+12=0 solve this
Answers
Answer:
GRANDMASTER player in my game
Step-by-step explanation:
How to solve your problem
Topics: Algebra, Quadratic Equation
122−40+12=0
12y^{2}-40y+12=012y2−40y+12=0
Quadratic formula
Factor
1
Common factor
122−40+12=0
12y^{2}-40y+12=012y2−40y+12=0
4(32−10+3)=0
4(3y^{2}-10y+3)=04(3y2−10y+3)=0
2
Divide both sides of the equation by the same term
4(32−10+3)=0
4(3y^{2}-10y+3)=04(3y2−10y+3)=0
32−10+3=0
3y^{2}-10y+3=03y2−10y+3=0
3
Use the quadratic formula
=−±2−4√2
y=\frac{-{\color{#e8710a}{b}} \pm \sqrt{{\color{#e8710a}{b}}^{2}-4{\color{#c92786}{a}}{\color{#129eaf}{c}}}}{2{\color{#c92786}{a}}}y=2a−b±b2−4ac
Once in standard form, identify a, b and c from the original equation and plug them into the quadratic formula.
32−10+3=0
3y^{2}-10y+3=03y2−10y+3=0
=3
a={\color{#c92786}{3}}a=3
=−10
b={\color{#e8710a}{-10}}b=−10
=3
c={\color{#129eaf}{3}}c=3
=−(−10)±(−10)2−4⋅3⋅3√2⋅3
y=\frac{-({\color{#e8710a}{-10}}) \pm \sqrt{({\color{#e8710a}{-10}})^{2}-4 \cdot {\color{#c92786}{3}} \cdot {\color{#129eaf}{3}}}}{2 \cdot {\color{#c92786}{3}}}y=2⋅3−(−10)±(−10)2−4⋅3⋅3
4
Simplify
Evaluate the exponent
Multiply the numbers
Subtract the numbers
Evaluate the square root