Math, asked by Draviddesh, 29 days ago

1³+2³+3³+...+n³=[n(n+1) /2] prove py principal of mathematical induction

I will make you as brainlyest ans if you answer this​

Answers

Answered by mathdude500
2

Appropriate Question :-

Prove by Principal of Mathematical Induction,

\rm :\longmapsto\:{1}^{3} +  {2}^{3} +  {3}^{3} +  -  -  +  {n}^{3} =  {\bigg(\dfrac{n(n + 1)}{2} \bigg) }^{2}

where, n is a natural number.

\large\underline{\sf{Solution-}}

Let assume that

\rm :\longmapsto\:P(n) :  \:  {1}^{3} +  {2}^{3} +  {3}^{3} +  -  -  +  {n}^{3} =  {\bigg(\dfrac{n(n + 1)}{2} \bigg) }^{2}

Step :- 1 For n = 1

\rm :\longmapsto\:P(1) :  \:  {1}^{3} =  {\bigg(\dfrac{1(1 + 1)}{2} \bigg) }^{2}

\rm :\longmapsto\:  {1} =  {\bigg(\dfrac{2}{2} \bigg) }^{2}

\rm :\longmapsto\:  {1} =  {\bigg(1 \bigg) }^{2}

\rm :\longmapsto\:1 = 1

\bf\implies \:P(1) \: is \: true

Step :- 2 Assume that P(n) is true for n = k

[ where k is some natural number ]

\rm :\longmapsto\:P(k) :{1}^{3} +  {2}^{3} +  {3}^{3} +  -  -  +  {k}^{3} =  {\bigg(\dfrac{k(k + 1)}{2} \bigg) }^{2}

Step :- 3 We have to prove that P(n) is true for n = k + 1

\rm :\longmapsto\:{1}^{3} +  {2}^{3} +  {3}^{3} +  -  -   {k}^{3} +  {(k + 1)}^{3} =  {\bigg(\dfrac{(k + 1)(k + 2)}{2} \bigg) }^{2}

Consider, LHS

\rm :\longmapsto\:{1}^{3} +  {2}^{3} +  {3}^{3} +  -  -   {k}^{3} +  {(k + 1)}^{3}

\rm \:  =  \: ({1}^{3} +  {2}^{3} +  {3}^{3} +  -  -   {k}^{3}) +  {(k + 1)}^{3}

\rm \:  =  \: {\bigg(\dfrac{k(k + 1)}{2} \bigg) }^{2}   +  {(k + 1)}^{3}

[ by using Step 2 ]

\rm \:  =  \:\dfrac{ {k}^{2} {(k + 1)}^{2}  }{4}  +  {(k + 1)}^{3}

\rm \:  =  \: {(k + 1)}^{2}\bigg(\dfrac{ {k}^{2} }{4}  + k + 1\bigg)

\rm \:  =  \: {(k + 1)}^{2}\bigg(\dfrac{ {k}^{2} + 4k + 4 }{4}\bigg)

\rm \:  =  \: {(k + 1)}^{2}\bigg(\dfrac{( {k + 2)}^{2}}{4}\bigg)

\rm \:  =  \:{\bigg(\dfrac{(k + 1)(k + 2)}{2} \bigg) }^{2}

Hence,

\bf\implies \:P(n) \: is \: true \: for \: n = k + 1

Hence,

By the Process of Principal of Mathematical Induction,

\rm :\longmapsto\:{1}^{3} +  {2}^{3} +  {3}^{3} +  -  -  +  {n}^{3} =  {\bigg(\dfrac{n(n + 1)}{2} \bigg) }^{2}

Answered by MrsGoodGirl
1

Prove by Principal of Mathematical Induction,

\rm :\longmapsto\:{1}^{3} + {2}^{3} + {3}^{3} + - - + {n}^{3} = {\bigg(\dfrac{n(n + 1)}{2} \bigg) }^{2}:⟼1 </p><p>3</p><p> +2 </p><p>3</p><p> +3 </p><p>3</p><p> +−−+n </p><p>3</p><p> =( </p><p>2</p><p>n(n+1)</p><p>	</p><p> ) </p><p>2</p><p> </p><p></p><p>where, n is a natural number.</p><p></p><p>\large\underline{\sf{Solution-}} </p><p>Solution−</p><p>	</p><p> </p><p></p><p>Let assume that</p><p></p><p>\rm :\longmapsto\:P(n) : \: {1}^{3} + {2}^{3} + {3}^{3} + - - + {n}^{3} = {\bigg(\dfrac{n(n + 1)}{2} \bigg) }^{2}:⟼P(n):1 </p><p>3</p><p> +2 </p><p>3</p><p> +3 </p><p>3</p><p> +−−+n </p><p>3</p><p> =( </p><p>2</p><p>n(n+1)</p><p>	</p><p> ) </p><p>2</p><p> </p><p></p><p>Step :- 1 For n = 1</p><p></p><p>\rm :\longmapsto\:P(1) : \: {1}^{3} = {\bigg(\dfrac{1(1 + 1)}{2} \bigg) }^{2}:⟼P(1):1 </p><p>3</p><p> =( </p><p>2</p><p>1(1+1)</p><p>	</p><p> ) </p><p>2</p><p> </p><p></p><p>\rm :\longmapsto\: {1} = {\bigg(\dfrac{2}{2} \bigg) }^{2}:⟼1=( </p><p>2</p><p>2</p><p>	</p><p> ) </p><p>2</p><p> </p><p></p><p>\rm :\longmapsto\: {1} = {\bigg(1 \bigg) }^{2}:⟼1=(1) </p><p>2</p><p> </p><p></p><p>\rm :\longmapsto\:1 = 1:⟼1=1</p><p></p><p>\bf\implies \:P(1) \: is \: true⟹P(1)istrue</p><p></p><p>Step :- 2 Assume that P(n) is true for n = k</p><p></p><p>[ where k is some natural number ]</p><p></p><p>\rm :\longmapsto\:P(k) :{1}^{3} + {2}^{3} + {3}^{3} + - - + {k}^{3} = {\bigg(\dfrac{k(k + 1)}{2} \bigg) }^{2}:⟼P(k):1 </p><p>3</p><p> +2 </p><p>3</p><p> +3 </p><p>3</p><p> +−−+k </p><p>3</p><p> =( </p><p>2</p><p>k(k+1)</p><p>	</p><p> ) </p><p>2</p><p> </p><p></p><p>Step :- 3 We have to prove that P(n) is true for n = k + 1</p><p></p><p>\rm :\longmapsto\:{1}^{3} + {2}^{3} + {3}^{3} + - - {k}^{3} + {(k + 1)}^{3} = {\bigg(\dfrac{(k + 1)(k + 2)}{2} \bigg) }^{2}:⟼1 </p><p>3</p><p> +2 </p><p>3</p><p> +3 </p><p>3</p><p> +−−k </p><p>3</p><p> +(k+1) </p><p>3</p><p> =( </p><p>2</p><p>(k+1)(k+2)</p><p>	</p><p> ) </p><p>2</p><p> </p><p></p><p>Consider, LHS</p><p></p><p>\rm :\longmapsto\:{1}^{3} + {2}^{3} + {3}^{3} + - - {k}^{3} + {(k + 1)}^{3}:⟼1 </p><p>3</p><p> +2 </p><p>3</p><p> +3 </p><p>3</p><p> +−−k </p><p>3</p><p> +(k+1) </p><p>3</p><p> </p><p></p><p>\rm \: = \: ({1}^{3} + {2}^{3} + {3}^{3} + - - {k}^{3}) + {(k + 1)}^{3}=(1 </p><p>3</p><p> +2 </p><p>3</p><p> +3 </p><p>3</p><p> +−−k </p><p>3</p><p> )+(k+1) </p><p>3</p><p> </p><p></p><p>\rm \: = \: {\bigg(\dfrac{k(k + 1)}{2} \bigg) }^{2} + {(k + 1)}^{3}=( </p><p>2</p><p>k(k+1)</p><p>	</p><p> ) </p><p>2</p><p> +(k+1) </p><p>3</p><p> </p><p></p><p>[ by using Step 2 ]</p><p></p><p>\rm \: = \:\dfrac{ {k}^{2} {(k + 1)}^{2} }{4} + {(k + 1)}^{3}= </p><p>4</p><p>k </p><p>2</p><p> (k+1) </p><p>2</p><p> </p><p>	</p><p> +(k+1) </p><p>3</p><p> </p><p></p><p>\rm \: = \: {(k + 1)}^{2}\bigg(\dfrac{ {k}^{2} }{4} + k + 1\bigg)=(k+1) </p><p>2</p><p> ( </p><p>4</p><p>k </p><p>2</p><p> </p><p>	</p><p> +k+1)</p><p></p><p>\rm \: = \: {(k + 1)}^{2}\bigg(\dfrac{ {k}^{2} + 4k + 4 }{4}\bigg)=(k+1) </p><p>2</p><p> ( </p><p>4</p><p>k </p><p>2</p><p> +4k+4</p><p>	</p><p> )</p><p></p><p>\rm \: = \: {(k + 1)}^{2}\bigg(\dfrac{( {k + 2)}^{2}}{4}\bigg)=(k+1) </p><p>2</p><p> ( </p><p>4</p><p>(k+2) </p><p>2</p><p> </p><p>	</p><p> )</p><p></p><p>\rm \: = \:{\bigg(\dfrac{(k + 1)(k + 2)}{2} \bigg) }^{2}=( </p><p>2</p><p>(k+1)(k+2)</p><p>	</p><p> ) </p><p>2</p><p> </p><p></p><p>Hence,</p><p></p><p>\bf\implies \:P(n) \: is \: true \: for \: n = k + 1⟹P(n)istrueforn=k+1</p><p></p><p>Hence,</p><p></p><p>By the Process of Principal of Mathematical Induction,</p><p></p><p>\rm :\longmapsto\:{1}^{3} + {2}^{3} + {3}^{3} + - - + {n}^{3} = {\bigg(\dfrac{n(n + 1)}{2} \bigg) }^{2}:⟼1 </p><p>3</p><p> +2 </p><p>3</p><p> +3 </p><p>3</p><p> +−−+n </p><p>3</p><p> =( </p><p>2</p><p>n(n+1)</p><p>	</p><p> ) </p><p>2

Similar questions