English, asked by srahul74090, 1 day ago

13. A can do a piece of work in 14 days, while B can do in 21 days. They begin together. But, 3 ,
before the completion of the work. A leaves off. Find the total number of days taken to complete the work.​

Answers

Answered by BrainlyChief
0

\huge\underline{\underline{\mathfrak\red{Given::}}}

\text{A can do a piece of work in 14 days},  \\ \text{while B can do in 21 days.} \\ \text{ They begin together but, 3 days} \\ \text{ before the completion of the work a leaves off} \\ \text{Find the total \: number of days} \\ \text{ taken to complete the work.}

\huge\underline{\underline{\mathfrak\red{Solution::}}}

\bf{★ \: ( A \: and \:  B)s \: work \: today} =  \\  \\ \bf{ \frac{1}{14} +  \frac{1}{21}  } \\  \\ \bf{ \implies  \frac{3 + 2}{42} } \\  \\ \bf{\implies \red { \frac{5}{42} } } \\ \\

\bf{At \:  the  \: end, \:  B  \: works \:  for  \: 3  \: days } \\ \bf{so \:  work  \: done \:  by  \: B \:  in  \: 3 \:  days}  \\  \\ \bf{ =  3 \times \frac{1}{21}  =  \red{\frac{1}{7} }}\\ \\

\bf{Remaining \:  work  \: 1−  \frac{1}{7} =  \frac{6}{7}  } \\ \bf{which \:  is \:  to \:  be \:  done \:  by  \: A  \: and \:  B}\\ \\

\bf{ \red { \frac{5}{42}} \: of \:  work \: (A+B)  \: can  \: do \:  in \:  1 \:  days}\\ \\

\bf{∴ \:  \frac{6}{7}   \: of  \: work \:  (A+B)  \: can  \: do \:  in  \: } \\ \bf{ \frac{1}{ \frac{5}{42} } \times  \frac{6}{7} =\red{ 7 \frac{1}{5}   \: days} }\\ \\

\bf{∴ Time  \: to \:  complete \:  the \:  work \: } \\ \bf{ =3 + 7 \frac{1}{5}  } \\\boxed{\mathfrak\pink{10 \frac{1}{5 \: } \:  \:  days} } \\  \\ \boxed{\mathfrak\green{hope \: it\: helps} }

Similar questions