Math, asked by smonish823, 11 months ago

13] A cone of height 24cm and radius 6cm is made up of clay. A child reshapes it in the form of sphere. Find
radius of the sphere​

Answers

Answered by Anonymous
143

AnswEr :

⋆ Refer to the Attachment for information :

  • Radius of Cone ( r ) = 6 cm
  • Height of Cone ( h ) = 24 cm
  • Radius of Sphere ( R ) = ?

given that child reshapes the Cone into sphere, therefore there Volume will be Equal.

⇒ Volume of Cone = Volume of Sphere

⇒ 1 /3 πr²h = 4 /3 πR³

⇒ r²h = 4R³

  • Plugging the Values

⇒ ( 6 )² × 24 = 4 × R³

⇒ ( 6 )² × 24 /4 = R³

⇒ ( 6 )² × 6 = R³

⇒ ( 6 )³ = R³

  • Cancelling Cubes

R = 6 cm

Radius of the Sphere will be 6 cm.

Attachments:

VishalSharma01: Great Answer :)
Answered by RvChaudharY50
45

\bold{Given}\begin{cases}\sf{Cone\:Height=24cm}\\\sf{Cone\:radius=6cm}\\\sf{radius\:of\:sphere=?}\end{cases}

\LARGE\underline{\underline{\sf \red{S}\blue{o}\green{l}\orange{u}\pink{t}\purple{i}\orange{o}\red{n}:}}

we know That ,

volume of Cone = \large\red{\boxed{\sf</strong><strong> </strong><strong>\frac{1}{3}</strong><strong>\pi \:  {r}^{2} h</strong><strong>}}

And,

Volume of Sphere = \large\</strong><strong>g</strong><strong>r</strong><strong>e</strong><strong>e</strong><strong>n</strong><strong>{\boxed{\sf</strong><strong> </strong><strong>\frac{4}{3} \pi \times  {</strong><strong>R</strong><strong>}^{3}</strong><strong>}}

\textbf{</strong><strong>since</strong><strong> </strong><strong>cone</strong><strong> </strong><strong>is</strong><strong> </strong><strong>reshapes</strong><strong> </strong><strong>into</strong><strong> </strong><strong>sphere</strong><strong>}

\textbf{</strong><strong>Their</strong><strong> </strong><strong>Volume</strong><strong> </strong><strong>will</strong><strong> </strong><strong>be</strong><strong> </strong><strong>Same</strong><strong>}

\rule{200}{</strong><strong>2</strong><strong>}

Comparing Volume Now,

  \frac{1}{3} \pi \:  {r}^{2} h \:  = \frac{4}{3} \pi \times \: {R}^{3} \\   \\ putting \: values \: now \:  \\  \\{6}^{2}  \times  \cancel24 =  \cancel4  \times {R}^{3} \\  \\  {6}^{3}  = {R}^{3} \:

So, Radius of Sphere Formed is :-----

\bold{\boxed{\huge{\boxed{\orange{\small{\boxed{\huge{\red{\bold{\:</strong><strong>R</strong><strong>=</strong><strong>6</strong><strong>c</strong><strong>m</strong><strong>}}}}}}}}}}

Similar questions