Math, asked by neetikalra81, 2 days ago

13. A floor of a building consists of 2,500 tiles. All the tiles are rhombus shaped with diagonal 40 cm and 25 cm. Find the total cost of polishing the floor at the rate of ₹8 per square meter.​

Answers

Answered by mathdude500
20

\large\underline{\sf{Solution-}}

Given that,

  • A floor of a building consists of 2,500 tiles.

  • All the tiles are rhombus shaped with diagonal 40 cm and 25 cm.

  • The total cost of polishing the floor is ₹8 per square meter.

Now, Area of 1 tile = Area of rhombus having diagonals 40 cm and 25 cm.

So,

\rm \: Area_{(1\:tile)} =  \dfrac{1}{2} \times product \: of \: two \: diagonals \\

\rm \: Area_{(1\:tile)} =  \dfrac{1}{2} \times 25 \times 40 \\

\rm \: Area_{(1\:tile)} = 25 \times 20 \\

\rm\implies \:Area_{(1\:tile)} = 500 \:  {cm}^{2}  \\

Since, floor consisting of 2500 tiles.

\rm\implies \:Area_{(2500\:tile)} = 500 \:   \times 2500 = 1250000 \:  {cm}^{2}   \\

\rm\implies \:Area_{(2500\:tile)} =  = 125 \:  {m}^{2}  \:  \:  \:  \{ \because \: 1 \: m = 100 \: cm \}  \\

Now, further given that

Cost of polishing 1 m² of the floor = ₹ 8

So,

Cost of polishing 125 m² of the floor = ₹ 8 × 125 = ₹ 1000

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Base\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Base\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}

Answered by StarFighter
15

Answer:

Given :-

  • A floor of a building consists of 2500 tiles.
  • All the tiles are rhombus shaped with diagonal 40 cm and 25 cm.

To Find :-

  • What is the total cost of polishing the floor at the rate of ₹8 per square metre.

Formula Used :-

\clubsuit Area Of Rhombus Formula :

\bigstar \: \: \sf\boxed{\bold{\pink{Area_{(Rhombus)} =\: \dfrac{d_1 \times d_2}{2}}}}\: \: \: \bigstar\\

where,

  • d₁ = First Diagonal of Rhombus
  • d₂ = Other Diagonal of Rhombus

Solution :-

First, we have to find the area of one tiles :

So,

\longrightarrow \sf\bold{\green{Area\: of\: one\: tile =\: Area_{(Rhombus)}}}\\

Given :

  • First Diagonal (d) = 40 cm
  • Other Diagonal (d) = 25 cm

According to the question by using the formula we get,

\implies \bf Area_{(Rhombus)} =\: \dfrac{d_1 \times d_2}{2}\\

\implies \sf Area_{(Rhombus)} =\: \dfrac{40\: cm \times 25\: cm}{2}\\

\implies \sf Area_{(Rhombus)} =\: \dfrac{\cancel{1000}\: cm^2}{\cancel{2}}\\

\implies \sf Area_{(Rhombus)} =\: \dfrac{500\: cm^2}{1}\\

\implies \sf\bold{\blue{Area_{(Rhombus)} =\: 500\: cm^2}}\\

Hence, area of one tiles is 500 cm² .

Now, we have to find the area of 2500 tiles :

Given :

  • Area of one tiles = 500 cm²

So,

\leadsto \sf Area\: of\: 2500\: tiles =\: 2500 \times 500\\

\leadsto \sf Area\: of\: 2500\: tiles =\: 1250000\\

\leadsto \sf\bold{\orange{Area\: of\: 2500\: tiles =\: 1250000\: cm^2}}\\

Now, we have to convert the area of 2500 tiles :

\mapsto \sf Area\: of\: 2500\: tiles =\: 1250000\: cm^2\\

\mapsto \sf Area\: of\: 2500\: tiles =\: \dfrac{125\cancel{0000}}{1\cancel{0000}}\: m^2\\

\mapsto \sf\bold{\purple{Area\: of\: 2500\: tiles =\: 125\: m^2}}\\

Now, we have to find the total cost of polishing the floor :

Given :

  • Area of floor = 125
  • Cost of polishing the floor = 8 per

So,

\small \dashrightarrow \sf Total\: Cost\: of\: polishing\: the\: floor =\: 8 \times 125\\

\small \dashrightarrow \sf\bold{\red{Total\: Cost\: of\: polishing\: the\: floor =\: ₹1000}}\\

\therefore The total cost of polishing the floor at the rate of 8 per is 1000.

\\

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Similar questions