Math, asked by daksh2619, 10 months ago


13. A ladder 25 m long reaches a window of a building 20 m above the ground. Determine the distance of the lader
from the building.

Answers

Answered by Anonymous
81

Answer -

Distance of the ladder from the building is 15 m.

Step-by-step explanation -

[ Refer the attachment for figure ]

Here -

  • length of ladder = Hypoteneous = H = 25 m
  • length of ladder from ground to window = Perpndicular = P = 20 m

We know that -

(Hypotenuse)² = (Perpendicular)² + (Base)²

or

(H)² = (P)² + (B)²

Substitute the known values above

\implies\:\sf{(25)^2\: = \:(20)^2\:+ \:(B)^2}

\implies\:\sf{625\:=\:400\:+\:(B)^2}

\implies\:\sf{625\:-\:400\:=\:(B)^2}

\implies\:\sf{225\:=\:(B)^2}

\implies\:\sf{\sqrt{225}\:=\:B}

\implies\:\sf{B\:=\:15\:m}

•°• Distance of ladder from the ground is 15 m.

Attachments:
Answered by RvChaudharY50
131

Question :----- we have to find the distance of the ladder

from the building.

Given :-------

  • length of ladder = AC = 25m
  • Height of building = AB = 20m

Formula used :----

  • Pythagoras theoram , (Hypotenuse)² = (Perpendicular)² + (Base)² = AB² +BC² = AC²
  • Sin @ = Perpendicular / Hypotenuse
  • Tan@ = Perpendicular /Base ...

we can solve it by :----

  • Basic Pythagoras theoram .
  • Trignometry Ratios ..

See First solution by Pythagoras theoram :-----

____________________________________________

\pink{\bold{\underline{\underline{Solution(1)}}}}

AC² = AB² +BC²

BC² = AC² - AB²

Putting values we get,

BC^{2}  =  {(25)}^{2}  -  {(20)}^{2}  \\  \\ BC^{2}  = 625 - 400 \\  \\ BC^{2}  = 225 \\  \\ BC^{2}  = ( {15)}^{2}  \\  \\ BC  = 15 \: m

So , the distance of the ladder from the building is 15m (Ans)

_____________________________

\red{\bold{\underline{\underline{Solution(2)}}}}

Lets solve it by Trignomteric Ratios Now, , ,

(Refer To image also for the value of @ = angle ACB)

we know,

sin@ = Perpendicular / Hypotenuse

Putting values we get,

→  \sin( \theta)  =  \frac{20}{25}  \\  \\→  \sin( \theta) =  \frac{4}{5}

Now we know that,

relationship of Tan@ in terms of sin@ is :---

→  \tan( \theta) =  \frac{  \sin( \theta)}{ \sqrt{1 - \sin( \theta)^{2} }}

Putting values we get,

→  \tan( \theta) =   \frac{ \frac{4}{5} }{ \sqrt{1 -   { (\frac{4}{5}) }^{2}  } }  \\  \\→  \tan( \theta) =  \frac{ \frac{4}{5} }{ \frac{3}{5} }   \\  \\ →  \tan( \theta) =  \frac{4}{ 3}

→  \tan( \theta) \: =   \frac{4}{3}  =  \frac{p}{b}  \\  \\ given \: p = 20 \\  \\ so \: multiply \: by \: 5 \: in \: num \: and \:  \\  denominator \: we \: get \:  =  \\  \\ →  \tan( \theta) =  \frac{20}{15}

Base = 15m

so, the distance of the ladder from the building is 15m ...

______________________________________

(Hope it helps you)

_____________________________

\large\bold\star\underline\mathcal{Extra\:Brainly\:Knowledge:-}

\underline\textsf{Trignometric Ratios For Acute Angles :---}

→ cosθ = sin(90-θ)

→ sinθ = cos(90-θ)

→ tanθ = cot(90-θ) = 1/cotθ

→ secθ = cosec(90-θ) = 1/cosθ

→ cosecθ = sec(90-θ) = 1/sinθ

→ cotθ = tan(90-θ) = 1/tanθ

\mathcal{BE\:\:BRAINLY}

Attachments:
Similar questions