Math, asked by Priyassharma36, 11 months ago

13. A plot of land in the form of rectangle has dimensions
250 mx 160. A drain 10 m side is dug all around it and the earth
dug out is evenly spread over the plot increasing its surface
level by 40 cm. Find the depth of the drain.

Answers

Answered by mddilshad11ab
133

\sf\large\underline{Given:}

  • \tt{Length\:_{(rectangle)}=250m}
  • \tt{Breadth\:_{(rectangle)}=160m}
  • \tt{Drain\:_{(dug\:in\: earth)}=10m\:all\: side}
  • \tt{The\:plot\: increasing\: it's\: surface\: level=40cm=0.40m}

\sf\large\underline{To\: Find:}

  • \tt{The\: drain\:_{(depth)}=?}

\sf\large\underline{Solution:}

  • At first calculate the the area of drain where the drain is dug out. Here, volume of cubiod is equal to the volume of plot.]

\tt{\implies Outer\:_{(length)}=250+2*10=270m}

\tt{\implies Outer\:_{(breadth)}=160+2*10=180m}

\tt{\implies Outer\:_{(area)}=270*180}

\tt{\implies Outer\:_{(area)}=48600m^2}

  • calculate Inner area of plot here]

\tt{\implies Inner\:_{(area)}=250*160}

\tt{\implies Inner\:_{(area)}=40000}

  • Now, calculate the area of drain ]

\tt{\implies Area\:_{(drain)}=Outer\:_{(area)}-Inner\:_{(area)}}

\tt{\implies Area\:_{(drain)}=48600-40000}

\tt{\implies Area\:_{(drain)}=8600m^2}

  • Let, the depth of drain be x here

\sf\large\underline{Formula\: used\:here:}

\tt{\implies Volume\:_{(drain)}=l*b*h}

\tt{\implies Area\:_{(drain)}*depth=Volume\:_{(drain)}}

\tt{\implies 8600\times\:x=250*160*0.40}

\tt{\implies 8600x=16000}

\tt{\implies x=1.86m}

\sf\large{Hence,}

\bf{\implies The\:depth\:_{(drain)}=1.86m}

Answered by Anonymous
22
  • Given
  • width of the drainlet = 10m
  • Let depth of the drainlet be = x

  • volume of the earth dug out

\leadsto v1+v2+v3+v4\\ \leadsto 2×v1+2×v4 ( v= volume )

\rightarrow 2[l×b×h] +2 [l×b×h]\\ \rightarrow 2[270×10×x] +2 [160×10×x]\\ \rightarrow 5400x+3200x

  • Volume of earth dug out = 8600xm^3

\rule{230}2

  • Volume of the plot cuboid = l×b×h

250×160×10 (250 & 160 are in metre ) so, changing 40 cm into metre.

\rightarrow 250×160×0.40m\\ \rightarrow 16000 m^3

  • we know,
  • volume of plot cuboid = volume of earth dug out.

→ 8600x=16000

→ x=\huge\frac{ 16000}{8600}

→ x = 1.86m

\rule{230}2

  • Hence,

  • Depth = 1.86m
Similar questions