Math, asked by 9804036320, 11 months ago

13. A solid metallic sphere of diameter 6cm is melted and cast to a solid cylinder of
radius 3cm. Find the height of the cylinder.

Answers

Answered by Anonymous
16

\red{\underline{\underline{Answer:}}}

\sf{Height \ of \ cylinder \ is \ 4 \ cm}

\sf\orange{Given:}

\sf{For, \ sphere}

\sf{\implies{Diameter (d)=6 \ cm}}

\sf{For, \ cone}

\sf{\implies{Radius (R)=3 \ cm}}

\sf\pink{To \ find:}

\sf{Height(h) \ of \ cylinder.}

\sf\green{\underline{\underline{Solution:}}}

\sf{Radius(r) \ of \ sphere=\frac{Diameter}{2}}

\sf{\therefore{Radius (r)= \frac{6}{2}}}

\sf{\therefore{Radius (r)=3 \ cm}}

\sf{Cone \ is \ formed \ by \ melting \ the}

\sf{sphere, \ hence \ they \ will \ have}

\sf{same \ volume.}

\boxed{\sf{Volume \ of \ Sphere=\frac{4}{3}\times\pi\times \ r^{3}}}

\boxed{\sf{Volume \ of \ Cylinder=\pi\times \ R^{2}\times \ h}}

\sf{\therefore{\frac{4}{3}\times\pi\times3^{3}=\pi\times3^{2}\times \ h}}

\sf{\therefore{h=\frac{4\times3\times3\times3}{3\times3\times3}}}

\sf{h=4 \ cm}

\sf\purple{\tt{\therefore{Height \ of \ cylinder \ is \ 4 \ cm}}}

Answered by Anonymous
20

Solution :

\bf{\red{\underline{\bf{Given\::}}}}

A solid metallic sphere of diameter 6 cm is melted and recast a solid cylinder of radius 3 cm.

\bf{\red{\underline{\bf{To\:find\::}}}}

The height of the cylinder.

\bf{\red{\underline{\bf{Explanation\::}}}}

Solid metallic sphere of diameter = 6 cm

Solid metallic sphere of radius = 6cm/2

Solid metallic sphere of radius = 3 cm

Solid cylinder of radius = 3 cm

Using the formula of the volume of sphere and volume of cylinder :

A/q

\longrightarrow\rm{\frac{4}{3} \pi r_1^{3} =\pi r_2^{2} h}\\\\\\\longrightarrow\rm{\dfrac{4}{3} \times (3)^{3} \times \pi =\pi \times (3)^{2} \times h}\\\\\\\longrightarrow\rm{\dfrac{4}{\cancel{3}} \times\cancel{ 27} \times \cancel{\pi} = \cancel{\pi }\times 9\times h}\\\\\\\longrightarrow\rm{4\times \cancel{9} = \cancel{9} \times h}\\\\\\\longrightarrow\rm{\pink{h=4\:cm}}

Thus;

The height of the cylinder will be 4 cm .

Similar questions