13. Apply division algorithm to find the quotient and remainder on dividing x4 + 4 by x2 + x + 1
Answers
Answered by
0
Answer:
Dividend = 3 x^3+ 4 x^2+ 6x + 93x
3
+4x
2
+6x+9
Divisor = 3x^3+2x+33x
3
+2x+3
Dividend = (Divisor\times quotient)+RemainderDividend=(Divisor×quotient)+Remainder
3 x^3+ 4 x^2+ 6x + 9 = (3x^3+2x+3 \times 3)+4x^23x
3
+4x
2
+6x+9=(3x
3
+2x+3×3)+4x
2
So, quotient = 3
Remainder = 4x^24x
2
To Verify :
3 x^3+ 4 x^2+ 6x + 9 = (9x^3+6x+9)+4x^23x
3
+4x
2
+6x+9=(9x
3
+6x+9)+4x
2
3 x^3+ 4 x^2+ 6x + 9 = 9x^3+6x+4x^2+93x
3
+4x
2
+6x+9=9x
3
+6x+4x
2
+9
So, LHS = RHS
Similar questions