Math, asked by muskanrana162045, 1 month ago

13. Cos ² 2x
Cos ²2x- Cos26x = Sin 4o. Sin 8 x

Answers

Answered by mathdude500
4

Appropriate Question :-

Prove that

\rm :\longmapsto\: {cos}^{2}2x -  {cos}^{2}6x = sin4x \: sin8x

\large\underline{\sf{Solution-}}

\rm :\longmapsto\: {cos}^{2}2x -  {cos}^{2}6x

\:  \: \rm= \:  \:(1 -  {sin}^{2}2x) - (1 -  {sin}^{2}6x)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \sf{  \because\: {sin}^{2}x +  {cos}^{2}x = 1}}

\:  \: \rm= \:  \:1 -  {sin}^{2}2x -1  + {sin}^{2}6x

\:  \: \rm= \:  \: {sin}^{2}6x -  {sin}^{2}2x

\:  \: \rm= \:  \:sin(6x + 2x) \: sin(6x - 2x)

\:  \: \rm= \:  \:sin(8x) \: sin(4x)

 \:  \:  \:  \:  \:  \: \boxed{ \sf{  \because\: {sin}^{2}x -  {sin}^{2}y = sin(x + y) \: sin(x - y)}}

Hence,

\bf :\longmapsto\: {cos}^{2}2x -  {cos}^{2}6x = sin4x \: sin8x

Alter Method :-

Consider,

\rm :\longmapsto\: {cos}^{2}2x -  {cos}^{2}6x

\:  \: \rm= \:  \:\dfrac{1 + cos2(2x)}{2}  - \dfrac{1 + cos2(6x)}{2}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \sf{  \because\: {2cos}^{2}x = 1 + cos2x}}

\:  \: \rm= \:  \:\dfrac{1 + cos4x}{2}  - \dfrac{1 + cos12x}{2}

\:  \: \rm= \:  \:\dfrac{1 + cos4x - 1 - cos12x}{2}

\:  \: \rm= \:  \:\dfrac{cos4x - cos12x}{2}

\:  \: \rm= \:  \:\dfrac{1}{2}  \times ( - 2) \: sin\bigg(\dfrac{4x - 12x}{2} \bigg)sin\bigg(\dfrac{4x + 12x}{2} \bigg)

\boxed{ \sf{  \because\:cosx - cosy =  -  \: 2 \: sin\bigg(\dfrac{x + y}{2} \bigg)sin\bigg(\dfrac{x - y}{2} \bigg)}}

\:  \: \rm= \:  \: -  \: sin\bigg(\dfrac{ - 8x}{2} \bigg)sin\bigg(\dfrac{16x}{2} \bigg)

\:  \: \rm= \:  \: -  \: sin( - 4x) \: sin(8x)

\:  \: \rm= \:  \: \: sin( 4x) \: sin(8x)

Hence,

\bf :\longmapsto\: {cos}^{2}2x -  {cos}^{2}6x = sin4x \: sin8x

Additional Information:-

\boxed{ \sf{sinx + siny \:  =  \: 2 \: sin\bigg(\dfrac{x + y}{2} \bigg)cos\bigg(\dfrac{x - y}{2} \bigg)}}

\boxed{ \sf{cosx + cosy \:  =  \: 2 \: cos\bigg(\dfrac{x + y}{2} \bigg)cos\bigg(\dfrac{x - y}{2} \bigg)}}

\boxed{ \sf{ 2sinxcosy\:  =  \: sin(x + y) + sin(x - y)}}

\boxed{ \sf{ 2cosxcosy\:  =  \: cos(x + y) + cos(x - y)}}

\boxed{ \sf{2sinxsiny =  \:cos(x - y) - cos(x + y) }}

Similar questions