Math, asked by rajakumark110, 3 months ago

13. Each side of an equilateral triangle
measures 2v3 cm. The length of its
altitude is.​

Answers

Answered by Anonymous
4

\underline{\underline{\textsf{\maltese\:\:Question :}}}

Each side of an equilateral triangle measures 2√3 cm. The length of its altitude is ?

\\

\underline{\underline{\textsf{\maltese\:\: Diagram :}}}

\\

\setlength{\unitlength}{2cm}\begin{picture}(0,0)\thicklines\qbezier(1, 0)(1,0)(3,3)\qbezier(5,0)(5,0)(3,3)\qbezier(5,0)(1,0)(1,0)\put(2.95,3.1){$\bf A$}\put(0.9,-0.2){$\bf B$}\put(5,-0.2){$\bf C$} \put(4.3,1.5){{$2\sqrt{3}\sf{cm}$}} \put(1,1.5){{$2\sqrt{3}\sf{cm}$}} \put(2.7,-.5){{$2\sqrt{3}\sf{cm}$}} \qbezier(3,3)(3,3)(3,0) \put(2.89,-0.2){$\bf M$}\put(3.1,0.3){\small90$^\circ$}\put(3.01,.001){\framebox(0.2,0.2)} \put(2.8,.001){\framebox(0.2,0.2)}\put(2.7,0.3){\small90$^\circ$} \put(1.3,0.2){\small60$^\circ$}  \put(4.5,0.2){\small60$^\circ$}  \put(3.03,2.5){\small30$^\circ$} \put(2.75,2.5){\small30$^\circ$}  \end{picture}

\\

\setlength{\unitlength}{2 cm}\begin{picture}(0,0)\thicklines \qbezier(3,3)(3,3)(3,0) \qbezier(3,0)(3,0)(5,0) \qbezier(3,3)(3,3)(5,0) \put(3.01,.001){\framebox(0.2,0.2)}\put(2.85,3.2){$\bf A$} \put(2.85,-0.4){$\bf M$} \put(5.2,-0.3){$\bf C$}\put(3.7,-.2){\small$\sqrt3$ cm}\put(4.2,1.5){\bf $2\sqrt{3}\sf{cm}$}}\put(4.5,.1){60$^\circ$} \put(3.1,0.3){\small90$^\circ$}\put(3.1,2.3){30$^\circ$}\end{picture}

\\

\underline{\underline{\textsf{\maltese\:\: Solution :}}}

\\

In ∆AMC

MC = \sf \frac{BC}{2}

MC = \dfrac{2\sqrt{3}}{2}

MC = √3

\\

Applying Pythagoras Theorem in ∆AMC

Hypotenuse² = Base² + Perpendicular ²

⇒ AC² = MC² + AM²

⇒ (2√3 cm)² = (√3 cm)² + AM²

⇒ 12cm² = 3cm² + AM²

⇒ 12cm² - 3cm² = AM²

⇒ 9cm² = AM²

⇒ √9 cm² = AM

⇒ 3cm = AM

⇒ AM = 3cm

\\

The length of its altitude is 3cm.

Attachments:
Similar questions