Math, asked by dhyaneswar2008, 3 months ago

13
Find A and B, if sin (A + B) =
cos (A - B), (where A and B are acute angles).​

Answers

Answered by Simrankaur1025
12

Step-by-step explanation:

Given, sin(A+2B)=

2

3

cos(A+4B)=0

A>B,

We know that, sin60

=

2

3

and cos90

=0

Consider,

sin(A+2B)=

2

3

and sin60

=

2

3

⟹(A+2B)=60

---------------(i)

Consider,

cos(A+4B)=0 and cos90

=0

⟹(A+4B)=90

---------------(ii)

Solve (i) and (ii) :

(A+2B)=60

(A+4B)=90

Subtracting (i) from (ii),

2B=30

B=

2

30

=15

From (ii)

(A+4B)=90

Also, B=15

A=90

−60

A=30

∴A=30

,B=15

Answered by narangiseervi9437
6

Answer:

Given, sin(A+2B)=23

cos(A+4B)=0

A>B,

We know that, sin60∘=23 and cos90∘=0

Consider, 

sin(A+2B)=23 and sin60∘=23

⟹(A+2B)=60∘   ---------------(i)

Consider, 

cos(A+4B)=0 and cos90∘=0

⟹(A+4B)=90∘   ---------------(ii)

Solve (i) and (ii) :

(A+2B)=60∘

(A+4B)=90∘

Subtracting (i) from (ii),

2B=30∘

B=230∘=15∘

From (ii)

(A+

I think it will help you

please follow me.

Similar questions