Math, asked by bihanijyoti579, 5 months ago


13. Find the area of the sector of a circle of radius 7cm ,if corresponding arc length is 6.2cm.

Answers

Answered by shreesanjanaa5
5

Answer:

s = rθ, so

a = 1/2 r^2 θ = 1/2 * 49 * (6.2/7) = 21.7

Answered by XxItzAnvayaXx
5

\boxed {\underline  {\mathbb {FINAL\:ANSWER:-}}}

\boxed {area\:of\:circle\: \implies 6.19cm^{2}}

\boxed {\underline  {\mathbb {GIVEN:-}}}

  • a circle of radius 7cm
  • corresponding arc length is 6.2cm

\boxed {\underline  {\mathbb {TO\:FIND:-}}}

area of the sector of a circle

\boxed {\underline  {\mathbb {FORMULA\:USED:-}}}

  • length\:of\:arc=\frac{ \theta }{360} \pi r
  • Area of sector = \frac{\theta}{360} \pi r^{2}\\

\boxed {\underline  {\mathbb {SOLUTION:-}}}

Arc length (length of sector\arc) is 6.2 cm

Radius of circle is 7 cm

\frac{ \theta }{360} \pi r  = 6.2

\frac{ \theta }{360} \times \frac{22}{7} \times 7 = 6.2\\

\frac {\theta \times 22 \times 7}{360}=6.2\

\frac {154 \theta }{360}=6.2\\

\theta = \frac{6.2 \times 360} {154}\\

\theta = 14.49

Now as we got \theta so let’s put in sector formula to get area of sector

Area of sector = \frac{\theta}{360} \pi r^{2}\\

= \frac{14.49}{360} \times \frac{22}{7} \times 7^{2}\\

= \frac{ 15620.22 }{2520}

= 6.19 cm^{2}

Similar questions