Math, asked by nandimunmun10, 8 months ago

13. Find the area of the triangle in which
(1) a =13 m.b=14 m.c=15 m:​

Answers

Answered by Tomboyish44
8

ATQ:

a = 13m

b = 14m

c = 15m.

Since we've been given the sides of the triangle, we can find the area of the triangle by using the Heron's Formula.

We first need to find the semi-perimeter (s).

\Longrightarrow \sf s = \dfrac{a + b + c}{2}

\Longrightarrow \sf s = \dfrac{13 + 14 + 15}{2}

\Longrightarrow \sf s = \dfrac{42}{2}

\Longrightarrow \sf s = 21m

By using Heron's Formula we get;

\Longrightarrow \sf \triangle ABC = \sqrt{s(s-a) (s-b) (s-c)}

\Longrightarrow \sf \triangle ABC = \sqrt{21 \ (21-13) \ (21-14) \ (21-15)}

\Longrightarrow \sf \triangle ABC = \sqrt{21 \ (8) \ (7) \ (6)}

\Longrightarrow \sf \triangle ABC = \sqrt{ (7 \times 3) \ (2 \times 2 \times 2) \ (7) \ (2 \times 3)}

\Longrightarrow \sf \triangle ABC = \sqrt{7 \times 3 \times 2 \times 2 \times 2 \times 7 \times 2 \times 3}

\Longrightarrow \sf \triangle ABC = \sqrt{7 \times 7 \times 3 \times 3 \times 2 \times 2 \times 2 \times 2}

\Longrightarrow \sf \triangle ABC = \sqrt{7^2 \times 3^2 \times 2^2 \times 2^2}

\Longrightarrow \sf \triangle ABC = 7 \times 3 \times 2 \times 2

\Longrightarrow  \underline{\underline{\bf{\triangle ABC = 84 m^2}}}

Therefore the area of the triangle with the sides 13m, 14m & 15m will be 84m².

Answered by Bᴇʏᴏɴᴅᴇʀ
7

Question:-

Find the Area of the Triangle:-

AnSwEr:-

Given:-

➣ a = 13m

➣ b = 14m

➣ c = 15m

To Find:-

➣ Area of the Triangle with the given sides

We know:-

Heron's Formula = \\  \sqrt{s(s-a) (s-b) (s-c)}

Soln:-

• Firstly finding the Semi- Perimeter(s):-

s = \dfrac{a + b + c}{2}

s = \dfrac{13 + 14 + 15}{2}

 s = \dfrac{42}{2}

 s = \cancel{\dfrac{42}{2}}

\bf{s = 21m}

Using Heron's Formula:-

\triangle ABC = \sqrt{s(s-a) (s-b) (s-c)}

 \triangle ABC = \sqrt{21 \ (21-13) \ (21-14) \ (21-15)}

 \triangle ABC = \sqrt{21 \ (8) \ (7) \ (6)}

 \triangle ABC = \sqrt{ (7 \times 3) \ (2 \times 2 \times 2) \ (7) \ (2 \times 3)}

\triangle ABC = \sqrt{7 \times 3 \times 2 \times 2 \times 2 \times 7 \times 2 \times 3}

\triangle ABC = \sqrt{7 \times 7 \times 3 \times 3 \times 2 \times 2 \times 2 \times 2}

\triangle ABC = \sqrt{7^2 \times 3^2 \times 2^2 \times 2^2}

\triangle ABC = 7 \times 3 \times 2 \times 2

\bf{\triangle ABC = 84 m^2}

Hence, we find out that the Area of the Triangle with the given sides will be 84m²

Recalling the Formulas Used:-

➣ Formula of Semi-Perimeter= \bf{s = \dfrac{a + b + c}{2}}

➣Heron's Formula = \\  \sqrt{s(s-a) (s-b) (s-c)}

Similar questions