Math, asked by ashishsharma36, 5 months ago

13. Find the value of (sec 0 + tan 0) (sec 0 – tan 0).

Answers

Answered by InfiniteSoul
3

\sf{\underline{\boxed{\purple{\large{\bold{ Solution }}}}}}

⠀⠀⠀⠀

\sf :\implies\:{\bold{( Sec\theta + Tan\theta)( Sec\theta - Tan\theta) }}

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{(a + b ) (  a - b ) = a^2 - b^2}}}}

⠀⠀⠀⠀

\sf :\implies\:{\bold{Sec^2\theta - Tan^2\theta }}

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{Sec^2A - Tan^2A = 1 }}}}

⠀⠀⠀⠀

\sf :\implies\:{\bold{ 1  }}

⠀⠀⠀⠀

⠀⠀⠀⠀

Some important formulae :-

⠀⠀⠀⠀

\sf{\underline{\underline{\large{\bold{ Trigonometrical \: Ratio}}}}}

⠀⠀⠀⠀

\sf :\implies\:{\bold{Sin = \dfrac{ Perpendicular }{ Hypotenuse } }}

⠀⠀⠀⠀

\sf :\implies\:{\bold{Cos = \dfrac{ Base }{ Hypotenuse } }}

⠀⠀⠀⠀

\sf :\implies\:{\bold{Tan = \dfrac{ Perpendicular }{ Base} }}

⠀⠀⠀⠀

\sf :\implies\:{\bold{Cosec = \dfrac{ Hypotenuse }{ Perpendicular } }}

⠀⠀⠀⠀

\sf :\implies\:{\bold{Sec = \dfrac{ Hypotenuse } {Base}}}

⠀⠀⠀⠀

\sf :\implies\:{\bold{Cot = \dfrac{Base} { Perpendicular } }}

⠀⠀⠀⠀

\sf{\underline{\underline{\large{\bold{Reciprocal\: identities }}}}}

⠀⠀⠀⠀

\sf :\implies\:{\bold{Sin = \dfrac{ 1 }{ Cosec } }}

⠀⠀⠀⠀

\sf :\implies\:{\bold{Cos = \dfrac{ 1 }{ Sec} }}

⠀⠀⠀⠀

\sf :\implies\:{\bold{Tan = \dfrac{ 1 }{ Cot } }}

⠀⠀⠀⠀

Answered by anshu24497
4

\huge\mathfrak{\color{green}{\underline{Solution:}}}

\sf { \blue{\implies\:{\bold{( Sec\theta + Tan\theta)( Sec\theta - Tan\theta) }}}}

\sf{\red{\boxed{\bold{(a + b ) ( a - b ) = a^2 - b^2}}}}

\sf { \blue{\implies\:{\bold{Sec^2\theta - Tan^2\theta }}}}

\sf{\red{\boxed{\bold{Sec^2A - Tan^2A = 1 }}}}

\sf { \blue{\implies\:{\bold{ 1 }}}}

 \Large \mathfrak{ \orange{ \underline{Some important formulae :-}}}

\sf{ \purple{{\underline{\underline{\large{\bold{ Trigonometrical  \: \: Ratio}}}}}}}

\begin{gathered}\small\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c} \sf {{\implies{Sin = \dfrac{ Perpendicular }{ Hypotenuse }}}} \\  \\ </p><p>\sf{{\implies{Cos = \dfrac{ Base }{ Hypotenuse } }}} \\  \\ \sf{{\implies{Tan = \dfrac{ Perpendicular }{ Base} }}} \\  \\ \sf \implies \: {Cosec = \dfrac{ Hypotenuse }{ Perpendicular } } \\  \\ \sf \implies{Sec = \dfrac{ Hypotenuse } {Base}} \\  \\ \sf \implies{Cot = \dfrac{Base} { Perpendicular } } \\  \\ \end{array}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}

\sf{ \purple{{\underline{\underline{\large{\bold{Reciprocal\: \:  identities  }}}}}}}

\begin{gathered}\small\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c} \sf \implies{Sin = \dfrac{ 1 }{ Cosec } } \\  \\ \sf \implies{Cos = \dfrac{ 1 }{ Sec} } \\  \\ \sf \implies{Tan = \dfrac{ 1 }{ Cot } }</p><p>\end{array}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}

Similar questions
Math, 5 months ago