Physics, asked by prakhyathi, 3 months ago

13. Given that P= Q = R. If P+ = Ř then the
angle between and © is 0,. If
P+ + = 7 then the angle between 7 and
Ris 02. Then the relation between 0, and en
is​

Attachments:

Answers

Answered by Sayantana
4

☆Question:

Given that P= Q = R. If  \vec{P}+\vec{Q}= \vec{R} then the angle between  \vec{P}\;and\; \vec{Q} is \theta_1. If  \vec{P}+\vec{Q}+\vec{R}=0 then the angle between  \vec{P}\;and\; \vec{R} is \theta_2. Then the relation between \theta_1, and \theta_2 is

☆Solution:

kindly see the attached figure!

Case 1-

 \vec{P}+\vec{Q}= \vec{R}

simply do the vector addition.

\rightarrow\rm \sqrt{P^2+Q^2 + 2PQcos\theta_1} = R

\rightarrow\rm P^2+Q^2 + 2PQcos\theta_1 = R^2

☆Its given that P=Q=R

\rightarrow\rm P^2+P^2 + 2P^2cos\theta_1 = P^2

\rightarrow\rm 2P^2 + 2P^2cos\theta_1 = P^2

\rightarrow\rm P^2= -2P^2cos\theta_1

\rightarrow\rm cos\theta_1 = \dfrac{-1}{2}

\rightarrow\bf \theta_1 = 120\degree

Case 2-

 \vec{P}+\vec{Q}+\vec{R}=0

\implies \vec{P}+\vec{R}= \vec{-Q}

Again do the vector addition between P and R.

\rightarrow\rm \sqrt{P^2+R^2 + 2PQcos\theta_2} = -R

\rightarrow\rm P^2+Q^2 + 2PQcos\theta_2 = R^2

\rightarrow\rm P^2+P^2 + 2P^2cos\theta_2 = P^2

\rightarrow\rm 2P^2 + 2P^2cos\theta_2 = P^2

\rightarrow\rm P^2= -2P^2cos\theta_2

\rightarrow\rm cos\theta_2 = \dfrac{-1}{2}

\rightarrow\bf \theta_2 = 120\degree

----

Relation

\bf \theta_1 = \theta_2 =120\degree

------------

Attachments:
Similar questions