Math, asked by tabithacecilia, 5 months ago


13. If 2^x= 3^y= 6^-z prove that 1/x+1/y+1/z=0

Answers

Answered by anindyaadhikari13
7

Required Answer:-

Given:

  •  \sf {2}^{x}  =  {3}^{y}  =  {6}^{ - z}

To prove:

  •  \sf \dfrac{1}{x} +  \dfrac{1}{y}  +  \dfrac{1}{z}  = 0

Proof:

Let us assume that,

 \sf \implies {2}^{x}  =  {3}^{y}  =  {6}^{ - z}  = k \: (constant)

So,

 \sf \implies {2}^{x}  = k

 \sf \implies 2  =  {k}^{^{1}/_{x}  } \:  \:  ....(i)

And,

 \sf \implies {3}^{y}  = k

 \sf \implies 3=  {k}^{^{1}/_{y}  }  \:  \: ....(ii)

Also,

 \sf \implies {6}^{ - z}  = k

 \sf \implies 6 =   {k}^{^{1}/_{ - z}  }  \:  \: ....(iii)

Again,

 \sf \implies 6 = 2 \times 3

From (i), (ii) and (iii), we can write that,

 \sf \implies {k}^{^{1}/_{ - z} }  =  {k}^{^{1}/_{x}  }  \times  {k}^{^{1}/_{y}}

 \sf \implies {k}^{^{1}/_{ - z} }  =  {k}^{^{1}/_{x}  + ^{1}/_{y}}

Comparing base, we get,

 \sf \implies \dfrac{ - 1}{z}  =  \dfrac{1}{x} +  \dfrac{1}{y}

 \sf \implies \dfrac{1}{x} +  \dfrac{1}{y}  +  \dfrac{1}{z}  = 0

(Hence Proved)

Formula Used:

  • \sf x^{y} = x^{z} \implies y = z, x \neq 0
  • \sf x^{y} = z \implies x = z^{^{1}/_{y}}
Answered by Anonymous
8

\huge\rm{Solution} \\  \\ \rm→ {2}^{x} =  {3}^{y}  =  {6}^{-z} =K(Let) \\  \\ \rm→ {2}^{x} =K \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   {3}^{y} =K \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  {6}^{-z} =K \\ \rm→2=K \frac{1}{x}→(i)  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 3=K \frac{1}{y}→(ii)  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 6= \frac{1}{-z} →(iii) \\  \\ \rm \: We \: know \: that  \\ \rm→2×3=6 \\ \rm→K \frac{1}{x}  \times K \frac{1}{y} =K- \frac {1}{z}  \\ \rm→K \frac{1}{x} + \frac{1}{y} =K \frac{ - 1}{z}  \\ \rm→ \frac{1}{x} + \frac{1}{y} =- \frac{1}{z}  \\ \rm→ \frac{1}{x} + \frac{1}{y}  +  \frac{1}{z} =0

\huge\rm{Formula \: used,} \\  \\ \rm \:  {a}^{n}  = b \\ \rm[ {a}^{n} ]   \: 1/n =b  \: 1/n   \\ \rm{\fbox {\: a=b \: 1/n}} \\  \\ \rm→ {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}

\rm{Learn  \: more:-}

https://brainly.in/question/32678937

Similar questions