Math, asked by sadwika965, 6 months ago

13. If cose theta + sin theta root2 cose theta then prove that cos theta - sin thetq = root 2 sin​ theta

Answers

Answered by varadad25
13

Question:

If \displaystyle{\sf\:\cos\:\theta\:+\:\sin\:\theta\:=\:\sqrt{2}\:\cos\:\theta}, then prove that, \displaystyle{\sf\:\cos\:\theta\:-\:\sin\:\theta\:=\:\sqrt{2}\:\sin\:\theta}.

Answer:

\displaystyle{\boxed{\red{\sf\:\cos\:\theta\:-\:\sin\:\theta\:=\:\sqrt{2}\:\sin\:\theta}}}

Step-by-step-explanation:

We have given that,

\displaystyle{\sf\:\cos\:\theta\:+\:\sin\:\theta\:=\:\sqrt{2}\:\cos\:\theta}

We have to prove that,

\displaystyle{\sf\:\cos\:\theta\:-\:\sin\:\theta\:=\:\sqrt{2}\:\sin\:\theta}

Now,

\displaystyle{\sf\:\cos\:\theta\:+\:\sin\:\theta\:=\:\sqrt{2}\:\cos\:\theta}

\displaystyle{\implies\sf\:(\:\cos\:\theta\:+\:\sin\:\theta\:)^2\:=\:(\:\sqrt{2}\:\cos\:\theta\:)^2\:\:\:-\:-\:-\:[\:Taking\:square\:on\:both\:sides\:]}

\displaystyle{\implies\sf\:\cos^2\:\theta\:+\:2\:\times\:\cos\:\theta\:\times\:\sin\:\theta\:+\:\sin^2\:\theta\:=\:\sqrt{2}\:\times\:\sqrt{2}\:\times\:\cos^2\:\theta}

\displaystyle{\implies\sf\:\cos^2\:\theta\:+\:2\:\cos\:\theta\:\sin\:\theta\:+\:\sin^2\:\theta\:=\:2\:\cos^2\:\theta}

\displaystyle{\implies\sf\:2\:\cos\:\theta\:\sin\:\theta\:=\:2\:\cos^2\:\theta\:-\:\cos^2\:\theta\:-\:\sin^2\:\theta}

\displaystyle{\implies\sf\:2\:\cos\:\theta\:\sin\:\theta\:=\:\cos^2\:\theta\:-\:\sin^2\:\theta}

\displaystyle{\implies\sf\:\cos^2\:\theta\:-\:\sin^2\:\theta\:=\:2\:\cos\:\theta\:\sin\:\theta}

\displaystyle{\implies\sf\:(\:\cos\:\theta\:+\:\sin\:\theta\:)\:(\:\cos\:\theta\:-\:\sin\:\theta\:)\:=\:2\:\cos\:\theta\:\sin\:\theta\:\:\:-\:-\:\left[\:a^2\:-\:b^2\:=\:(\:a\:+\:b\:)\:(\:a\:-\:b\:)\:\right]}

\displaystyle{\implies\sf\:\sqrt{2}\:\cos\:\theta\:\times\:\left(\:\cos\:\theta\:-\:\sin\:\theta\:\right)\:=\:2\:\cos\:\theta\:\sin\:\theta\:\:\:-\:-\:[\:Given\:]}

\displaystyle{\implies\sf\:\cos\:\theta\:-\:\sin\:\theta\:=\:\dfrac{\cancel{2}\:\cancel{\cos\:\theta}\:\sin\:\theta}{\cancel{\sqrt{2}}\:\cancel{\cos\:\theta}}}

\displaystyle{\implies\boxed{\red{\sf\:\cos\:\theta\:-\:\sin\:\theta\:=\:\sqrt{2}\:\sin\:\theta}}}

Hence proved!

Answered by Anonymous
4

Question :

if \:( cosθ - sinθ )=  \sqrt{2} cosθ \:  \: then \:  \:

then \: prove \: that \: (cosθ - sinθ) =  \sqrt{2}sinθ

To Prove

prove \:  \: that  \:  \: (cosθ - sinθ) =  \sqrt{2}sinθ

Answer :

Now,

cosθ  + sinθ =  \sqrt{2} cosθ

Squaring on both sides,

  {(cos θ  + sinθ )^{2} }  = 2  {cos}^{2} θ

 {cos}^{2} θ +  {sin}^{2} θ + 2cosθsinθ =  2 {cos}^{2} θ

2cosθsinθ = 2 {cos}^{2} θ - {cos}^{2} θ -  {sin}^{2} θ

2cosθsinθ =  {cos}^{2} θ -  {sin}^{2} θ

Since,

( {a}^{2}  -  {b}^{2} ) = (a + b)(a - b)

2cosθsinθ = (cosθ + sinθ)(cosθ - sinθ)

We know that,

(cosθ + sinθ) =  \sqrt{2} cosθ

hence,

2cosθsinθ = (  \sqrt{2} sinθ)(cosθ - sinθ)

 (cos θ   -sinθ) = \frac{ \sqrt{2} \times  \sqrt{2}  \times cos θ \times sinθ}{ \sqrt{2}  \times cosθ}

(cosθ \:  -  \: sinθ) \:  =  \:  \sqrt{2} sinθ

Hence proved.

Similar questions