Math, asked by hasini4697, 17 days ago

13. If sin θ+ cos θ = √2 then θ=


tq​

Answers

Answered by mrAdorableboy
9

\huge\mathcal\colorbox{lavender}{{\color{b}{✿Yøur-Añswer♡}}}

\large\bf{\underline{\red{Maths}}}

The answer is 45°

For explaining refer to the above attachment

\boxed{I \:Hope\: it's \:Helpful}

{\sf{\bf{\blue{@ℐᴛz Sam࿐}}}}

Attachments:
Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given that,

\rm \:sin\theta  + cos\theta  =  \sqrt{2}  \\

can be rewritten as

\rm \: cos\theta  =  \sqrt{2} - sin\theta  \\

On squaring both sides, we get

\rm \: (cos\theta)^{2}   =  (\sqrt{2} - sin\theta)^{2}   \\

\rm \:  {cos}^{2}\theta  =  {( \sqrt{2}) }^{2} +  {sin}^{2}\theta  - 2 \times  \sqrt{2} \times sin\theta  \\

\rm \:  {cos}^{2}\theta  = 2 +  {sin}^{2}\theta  - 2 \sqrt{2}sin\theta  \\

can be further rewritten as

\rm \:  1 - {sin}^{2}\theta  = 2 +  {sin}^{2}\theta  - 2 \sqrt{2}sin\theta  \\

\rm \:  2{sin}^{2}\theta  - 2 \sqrt{2}sin\theta  +  1 = 0 \\

can be rewritten as

\rm \:   {( \sqrt{2} sin\theta )}^{2}  - 2 \times  \sqrt{2}sin\theta \times 1  +   {(1)}^{2}  = 0 \\

\rm \:  {( \sqrt{2}sin\theta  - 1) }^{2}  = 0 \\

\rm \:  \sqrt{2} sin\theta - 1 = 0 \\

\rm \:  \sqrt{2} sin\theta = 1\\

\rm \: sin\theta  = \dfrac{1}{ \sqrt{2} } \\

\rm \: sin\theta  =sin45\degree  \\

\rm\implies \:\theta  = 45\degree  \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{sin(90 \degree - x) = cosx}\\ \\ \bigstar \: \bf{cos(90 \degree - x) = sinx}\\ \\ \bigstar \: \bf{tan(90 \degree - x) = cotx}\\ \\ \bigstar \: \bf{cot(90 \degree - x) = tanx}\\ \\ \bigstar \: \bf{cosec(90 \degree - x) = secx}\\ \\ \bigstar \: \bf{sec(90 \degree - x) = cosecx}\\ \\ \bigstar \: \bf{ {sin}^{2}x +  {cos}^{2}x = 1 } \\ \\ \bigstar \: \bf{ {sec}^{2}x -  {tan}^{2}x = 1  }\\ \\ \bigstar \: \bf{ {cosec}^{2}x -  {cot}^{2}x = 1 }\\ \\  \\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions